UC-NRLF

GIFT OF

MICHAEL REESE

THE

RAILROAD SPIRAL.

THE THEORY OF THE

COMPOUND TRANSITION CURVE

REDUCED TO

PRACTICAL FORMULE AND RULES FOR APPLICATION IN FIELD WORK; WITH

COMPLETE TABLES OF DEFLECTIONS AND ORDINATES FOR FIVE HUNDRED SPIRALS.

BY
WILLIAM H. SEARLES, C.E.,
member american society of civil. fnginfers, author "field engineering."

NEW YORK :
JOHN WILEY \& SONS.
1882.

1882,

BY JOHN WILEY \& SONS.
243000

$4.0-85.381 .38$

PREFACE.

The object of this work is to reduce the well-known theory of the cubic parabola or multiform compound curve, used as a transition curve, to a practical and convenient form for ordinary field work.

The applicability of this curve to the purpose intended has been fully demonstrated in theory and practice by others, but the method of locating the curve on the ground has been left too much in the mazes of algebra, or else has been described as a system of offsets, or fudging. Where a system of deflection angles has been given, the range of spirals furnished has been much too limited for generalpractice. In consequence the great majority of engineers have contented themselves with locating circular curves only, leaving to the trackman the task of adjusting the track, not to the centres given near the tangent points, but to such an approximation to the spiral as he could give "by eye."

The method here described is that of transit and chain, analogous to the method of running circular curves ; it is quite as simple in practice, and as accurate in result. No offsets need be measured, and the curve thus staked out is willingly followed by the trackmen because it " looks right," and is right.

The preliminary labor of selecting a proper spiral for a given case, and of calculating the necessary distances to locate it at the proper place on the line, is here explained, and reduced to the simplest method. Many of
the quantities required have been worked out and tabulated once for all, leaving only those values to be found which are peculiar to the individual case in hand. A large number of spirals are thus prepared, and their essential parts are given in Table III.

In section 22 is developed the method of applying spirals to existing circular curves, without altering the length of line, or throwing the track off of the road bed, an important item to roads already completed. Table V. contains samples of this kind of work arranged in order, so that, by a simple interpolation, the proper selection can be made in a given case.

The series of spirals given in Table III. are obtained by a simple variation of the chord-length, while the deflections and central angles remain constant. This is the converse of our series of circular curves, in which the chord is constantly 100 feet, while the deflections and central angles take a series of values.

The multiform compound curve has been chosen as the basis of the system, rather than the cubic parabola, because, while there is no practical difference in the two, the former is more in keeping with ordinary field methods, and is far more convenient for the calculation and tabulation of values in terms of the chord-unit, or of measurement along the curve. While the several component arcs of the spiral are thus assumed to be circular, yet the chord-points are points of a true spiral, to which the track naturally conforms when laid according to the chord-points given as centres.

The "Railroad Spiral" is in the nature of a sequel to "Field Engineering;" the same system of notation is adopted, and any tables referred to, but not given here, will be found in that work.

Wm. H. Searles, C. E.

New York, fuly I, 1882.

CONTENTS.

CHAPTER I.

INTRODUCTION.
SECTION PAGE
I. Objections to simple circular curves I
3. Office of the spiral 2
CHAPTER II.
THEORY OF THE SPIRAL.
3. Description of the spiral. 3
4. Co-ordinates of the spiral 3
5. Deflection angles from the main tangent 5
6. Deflection angles from an auxiliary tangent 6
7. The chord-length as a variable 9
8. Construction of Table of Co-ordinates. 10
9. Elements of the spiral 10
10. Selection of a spiral. II
CHAPTER III.
ELEMENTARY PROBLEMS.
II. To find a long chord $S L$ 13
12. To find the tangents $S E$ and $E L$ I3
13. To find a long chord $Q L$ I4
14. To find the tangents $Q E^{\prime}$ and $E^{\prime} L$ 15
15. To find the tangent-distance $T_{s}=S V$. 16
16. To find T_{s} approximately 17
17. To find the radius R^{\prime} in terms of T_{s} and spiral 17
SECTION PAGE
18. To find diff. R^{\prime} in terms of diff. Ts I9
19. To find the external distance E_{s} 20
20. To find the radius R^{\prime} in terms of E_{s} and spiral. 21
21. To find diff. R^{\prime} in terms of diff. x for E_{s} constant. 23
CHAPTER IV.
SPECIAL PROBLEMS.
22. Given, a simple curve, to replace it by another with spirals; length of line unchanged 25
a. To find the radius R^{\prime} 26
b. To find the offset h 26
c. To find the distance $d=A S$. 27
d. To find lengths of old and new lines 27
e. To select a suitable spiral 28
f. To find diff. h in terms of diff. R^{\prime} 29
23. Given, a simple curve, to apply spirals without change of radius 32
24. Given, a simple curve, to compound it for spirals without disturbing the middle portion 34
25. Given, a compound curve, to replace it by another, with spirals; length of line unchanged 36
26. Given, a compound curve, to apply spirals without change of radii 40
27. Given, a compound curve, to introduce spirals without dis- turbing the P. C. C. 42
CHAPTER V.
FIELD WORK.
28. To locate a spiral from S to L 45
29. To locate a spiral from L to S 46
30. To interpolate the regular stations. 47
31. Choice of method for locating spirals 47
32. To locate a spiral by ordinates 48
33. Use of spirals on location work 48
34. Description of line with spirals. 48
35. Elevation of outer rail on spirals 49
36. Monuments. 49
37. Keeping field-notes 49

TABLES.

pageI. Elements of the spiral of chord-length 100 50
II. Deflection angles for the spiral 52
III. Co-ordinates and Degree of curve of the spiral. 58
IV. Functions of the spiral angle s. 77
V. Selected spirals for unchanged length of line. § 22. 78

THE RAILROAD SPIRAL.

CHAPTER I.

INTRODUCTION.
I. On a straight line a railway track should be level transversely; on a curve the outer rail should be raised an amount proportional to the degree of curve. At the tangent point of a circular curve both of these conditions cannot be realized, and some compromise is usually adopted, by which the rail is gradually elevated for some distance on the tangent, so as to gain at the tangent point either the full elevation required for the curve, or else three-quarters or a half of it, as the case may be. The consequence of this, and of the abrupt change of direction at the point of curve, is to give the car a sudden shock and unsteadiness of motion, as it passes from the tangent to the curve.

The railroad spiral obviates these difficulties entirely, since it not only blends insensibly with the tangent on the one side, and with the circle on the other, but also affords sufficient space between the two for the proper elevation of the outer rail. Moreover, since the curvature of the spiral increases regularly from the tangent to the circle, and the elevation of the outer rail does the same, the one is everywhere exactly proportional to the other, as it should be. The use of the spiral allows
the track to remain level transversely for the whole length of the tangent, and yet to be fully inclined for the whole length of the circle, since the entire change in inclination takes place on the spiral.
2. The office of the spiral is not to supersede the circular curve, but to afford an easy and gradual transition from tangent to curve, or vice versa, in regard both to alignment and to the elevation of the outer rail. A spiral should not be so short as to cause too abrupt a rise in the outer rail, nor yet so long as to render the rise almost imperceptible, and therefore difficult of actual adjustment. Within these limits a spiral may be of any length suited to the requirements of the curve or the conditions of the locality. To suit every case in practice an extensive list of spirals is required from which to select.

CHAPTER II.

THEORY OF THE SPIRAL.
3. The Railroad Spiral is a compound curve closely resembling the cubic parabola; it is very flat near the tangent, but rapidly gains any desired degree of curvature.

The spiral is constructed upon a series of chords of equal length, and the curve is compounded at the end of each chord. The chords subtend circular arcs, and the degree of curve of the first arc is made the common difference for the degrees of curve of the succeeding arcs. Thus, if the degree of curve of the first arc be $0^{\circ} 10^{\prime}$, that of the second will be $0^{\circ} 20^{\prime}$, of the third, $0^{\circ} 30^{\prime}, \& \mathrm{c}$.

The spiral is assumed to leave the tangent at the beginning of the first chord, at a tangent point known as the Point of Spiral, and designated by the initials P.S., or on the diagrams by the letter S .
4. To determine the co-ordinates of the several chord extremities, let the point S be taken as the origin of co-ordinates, the tangent through S as the axis of Y, and a perpendicular through S as the axis of X . Then x, y, will represent the co-ordinates of any point of compound curvature in the spiral, x being the perpendicular offset from the point to the tangent, and y the distance on the tangent from the origin to that offset.

For the purpose of calculation let us assume 100 feet as the chord-length, and 0° ro' as the degree of curve of
the first arc of a given spiral. Then, since the degree of curve is an angle at the centre of a circle subtended by a chord of 100 feet, the central angle of the first chord is 10^{\prime}, of the second 20^{\prime}, of the third $30^{\prime}, \& \mathrm{c}$., and the angles which the chords make with the tangent are :

or in general the inclination of any chord to the tangent at S is equal to half the central angle subtended by that chord added to the central angles of all the preceding chords. If now we consider the tangent as a meridian, the latitude of a chord will be the product of the chord by the cosine of its inclination, and its departure will be the product of the chord by the sine of its inclination to the tangent. A summation of the several latitudes for a series of chords will give us the required values of y, and a summation of the several departures will give us the required values of x. By the aid of a table of sines and cosines, we may therefore readily prepare the following statement :

Chord.	Inclin. to tang.	Dep. = roo sine	x.	Lat. $=$ yos cosine.	y.
I	$0^{\circ} 05^{\prime}$	0. 145	. 145	100.000	100.000
2	$0^{\circ} 20^{\prime}$	0. 582	. 727	99.998	199.998
3	$0^{\circ} 45^{\prime}$	1.309	2.036	99.991	299.989
+	$\mathrm{I}^{\circ} 20^{\prime}$	2.327	$4 \cdot 363$	99.979	399.968

In this manner Table I. has been constructed.
5. To calculate the deflection angles of the Spiral; Inst. at S. If in the diágram, Fig. I, we draw the long chords $\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \& \mathrm{c}$., we may easily determine the angle i, which any long chord makes with the tangent by means of the co-ordinates of the further extremity of the chord, for

Having calculated a series of values of the angle i, we may lay out the spiral on the ground by transit deflections from the tangent, the transit $\mathrm{b} \varepsilon-$ ing at the point S.

The statement of the calculation is as follows :

Point.	x	y	$\tan i=\frac{x}{y}$,	i
1	.145	100.000	.00145	$0^{\circ} 05^{\prime} 00^{\prime \prime}$
2	.727	199.998	.00364	$12^{\prime} 30^{\prime \prime}$
3	2.036	299.989	.00679	$23^{\prime} 20^{\prime \prime}$
4	4.363	399.968	.01091	$37^{\prime} 30^{\prime \prime}$
$\& c$.				\&c.

The values of i are more readily found by logarithms however, since

$$
\log \tan i=\log x-\log y
$$

By this formula the first part of Table II. (Inst. at S)

Fig. 2. has been calculated, and these are the only deflections needed for field use when the entire spiral is visible from S.
6. To calculate the deflection angles when the transit is at any other chord-point than S: Suppose the transit at point I, Fig. 2.

In the diagram draw through the point 1 a line parallel to the tangent at S , and also the long chords $\mathrm{I}-3$, $1-4, \& c$., and let a_{1} represent the angle between any one of these long chords and the parallel. Then, from the right-angled triangles of the diagram we have the following expressions :

For point $2, \tan a_{1}=\frac{x_{2}-x_{1}}{y_{2}-y_{1}}=\frac{.572}{99.998}=.00582$.
" " $3, \tan a_{1}=\frac{x_{3}-x_{1}}{y_{3}-y_{1}}=\frac{1.891}{199.989}=.00945$.
" " $4, \tan a_{1}=\frac{x_{4}-x_{1}}{y_{4}-y_{1}}=\frac{4.218}{299.968}=.014 \mathrm{II}$.
\&c., \&c., \&c.
But these are better worked by logarithms, and the values of a_{1} found directly from the logarithmic tangent.

Let $s=$ the spiral angle $=$ the angle subtended by any number of spiral chords, beginning at S . Then $s=$ the sum of the central angles of the several chords considered; and it therefore equals the angle between
the tangent at S and a tangent at the last point considered. The series of values of the angle s is as follows:

Point.	Angle under single chord.	Angle s.
S	$0^{\circ} 00^{\prime}$	0^{\prime}
1	10^{\prime}	10^{\prime}
2	20^{\prime}	30^{\prime}
3	30^{\prime}	$\mathrm{I}^{\circ} 00^{\prime}$
4	40^{\prime}	$\mathrm{I}^{\circ} 40^{\prime}$
\&c.,		\&c.

Since the values of a_{1} found above are deflections at point I from a parallel to the main tangent, it is evident that if we subtract from each the value of s for point 1 , or 10 ', we shall have the deflections, i, from an auxiliary tangent through the point \mathbf{r}, which we require for use in the field. The statement is as follows :

Instrument at point $1 ;$	$\left(s=10^{\prime}\right)$.	
Point.	Angle a_{1},	Angle i.
2	$20^{\prime \prime}$	10^{\prime}
3	$32^{\prime} 30^{\prime \prime}$	$22^{\prime} 30^{\prime \prime}$
4	$48^{\prime \prime} 20^{\prime \prime}$	$38^{\prime} 20^{\prime \prime}$
$\& c .$,	$\& \mathrm{c} .$,	$\& c$.

The instrument will read zero on the auxiliary tangent through point I where it stands, and of course the back deflection over the circular arc Sr is 05^{\prime}. Hence we have the complete table of deflections when the instrument is at point r .

Similarly, if we suppose the instrument to be at point 2 , we shall have the statement :

$$
\begin{aligned}
& \text { Point. } \\
& \begin{array}{r}
\tan a_{2}=\frac{x_{3}-x_{2}}{y_{3}-y_{2}}=\frac{1.309}{99.991}=.01018 \\
4
\end{array} \tan a_{2}=\frac{x_{4}-x_{2}}{y_{4}-y_{2}}=\frac{3.636}{199.970}=.01818 . \\
& \& \mathrm{c} .,
\end{aligned}
$$

and since for point $2, s=20^{\prime \prime}$, we have :

Point.	Angle a_{2}.	Angle \boldsymbol{i}.
3	$0^{\circ} 35^{\prime \prime}$	$0^{\circ} 15$
4	$0^{\circ} 52^{\prime} 30^{\prime \prime}$	$0^{\circ} 32^{\prime} 30^{\prime \prime}$
	\&c.,	\&c.

The instrument will read zero on the auxiliary tangent through the point 2 , the back deflection to the point 1 is half the central angle under the second chord, or 10^{\prime}, and the back deflection to S is the difference between s_{2} and the deflection at S for point 2 , or $30^{\prime}-12^{\prime} 30^{\prime \prime}=$ $17^{\prime} 30^{\prime \prime}$. We thus may complete the table of deflections for the instrument at point 2 .

By a similar process the deflections required at any other chord-point may be deduced. It should be noted, however, in forming the table, that the back deflection
 to any point is equal to the value of s for the place of the instrument, less the value of s for the back-point, less the forward deflection at the back-point for the place of the instrument. This is obvious from an inspection of the triangle formed by the two auxiliary tangents and the chord joining the two points in question.

Thus, Fig. 3, when the instrument is at point 4 , the back deflection for point 2 is equal to $100^{\prime}-30^{\prime}-32^{\prime} 30^{\prime \prime}=37^{\prime} 30$."

In the manner above described has been calculated the complete
Fig. 3. table of deflections from auxiliary tangents at chord-points, for every chord-point of the spiral up to point 20, Table II. It is evident, that by
means of this table the entire spiral may be located, the transit being set over any chord-point desired, while the chain is carried around the curve in the usual manner; also, that the curve may be laid out in the reverse direction from any chord-point not above the 20th, since all the back deflections are also given.

7. Variation in the chord-length.

We have thus far assumed the spiral to be constructed upon chords of 100 feet, but it is evident that such a spiral would be entirely too long for practical use; it would be 1700 feet long before reaching a 3° curve.

We must, therefore, assume a shorter chord; but in so doing it will not be necessary to recalculate the angles and deflections, for these remain the same whatever be the chord-length. By shortening the chord-length we merely construct the spiral on a smaller scale. The values of x and y and of the radii of the arcs at corresponding points are proportional to the chord-lengths, and the degrees of curve for corresponding chords are (nearly) inversely proportional to the same.

Thus for any chord-length c we have :

$$
\begin{aligned}
& x: x_{100}:: c: 100, \text { or } x=\frac{c}{100} x_{100} \\
& y: y_{100}:: c: 100, \text { or } y=\frac{c}{100} y_{100} \\
& R_{s}: R_{100}:: c: 100, \quad \text { or } R_{s}=\frac{c}{100} R_{1000}
\end{aligned}
$$

Let $D_{s}=$ the degree of curve due to radius R_{s}, and $D_{100}=$ the degree of curve due to radius R_{100}; then,

$$
R_{s}=\frac{100}{2 \sin \frac{1}{2} D_{0}}, \text { and } R_{100}=\frac{100}{2 \sin \frac{1}{2} D_{100}}
$$

whence

$$
\sin \frac{1}{2} D_{s}=\frac{100}{c} \sin \frac{1}{2} D_{100},
$$

in which D_{s} is the degree of curve upon any chord in a spiral of chord-length c, and D_{100} is the degree of curve upon the corresponding chord in the spiral of chordlength 100.

Accordingly, if we assume a chord-length of to feet the values of x and y will be $\frac{10}{100}$ of those calculated for a chord-length of roo feet, while the degree of curve on each chord will be (nearly) io times as great as before.
8. In the construction of Table III., we have assumed the chord to have every length successively from 10 feet to 50 feet, varying by a single foot, and have calculated the corresponding values of x, y and D_{s}. The logarithm of x is also added, and the length of spiral $n c$.

We are thus furnished with 41 distinct spirals, but since the same spiral may be taken with a different number of chords (not less than three) to suit different cases, the variations which the tables furnish amount to no less than 500 spirals, some one or more of which will be adapted to any case that can arise. The maximum length of spiral has been taken at 400 feet; the shortest spiral given is 3×10 feet $=30$ feet. Between these limits may be found spirals of various lengths.
9. The elements of a spiral are :
D_{s}, The degree of curve on the last chord,
n, The number of chords used,
c, The chord-length,
$n \times c$, The length of spiral,
s, The central angle of the spiral,
x, y, The coordinates of the terminal point.
Every spiral must terminate, or join the circular curve
at a regular chord-point of which the coordinates are known.

Io. To select a spiral.

The terminal chord of a spiral must subtend a degree of curve less than that of the circular curve which follows, but the next chord beyond (were the spiral produced) must subtend a degree of curve equal to or differing but a little from that of the circular curve.

Thus, if the circle were a to degree curve, the spiral may consist of 5 chords 10 feet long (the degree of curve on the 6 th chord being $10^{\circ} 00^{\prime} 45^{\prime \prime}$), or of 15 chords 26 feet long (the degree of curve on the 16 th chord being $10^{\circ} 16^{\prime} 09^{\prime \prime}$), the length of spiral is 50 feet in one case and 390 in the other ; between these limits the tables furnish 15 other spirals of intermediate length, all adapted to join a 10 degree curve.

We may therefore introduce one more condition which will fix definitely the proper spiral to employ. If the length of spiral be assumed, we seek in the tables those values of n and c which are consistent with the required value of D_{s} for $(n+1)$, at the same time that their product, nc, equals as nearly as may be the assumed length of spiral. Thus, if with a ro degree curve a length of about $\mathrm{I}_{3} 0$ feet were desirable, we should select either

$$
\begin{aligned}
n=8, c & =15, D_{s}=10^{\circ} 00^{\prime} 45^{\prime \prime} ; \quad n c=120 \mathrm{ft} . ; \\
\text { or } n & =9, c=16, D_{s}=10^{\circ} 25^{\prime} 5 \mathrm{I}^{\prime \prime} ;
\end{aligned} \quad n c=144 \mathrm{ft} . \quad .
$$

D_{s} is always taken for $(n+1)$. When circumstances permit, a chord-length of about 30 feet will give the best proportioned spirals. With a 30 foot chord-length the length of spiral will be about 770 times the superelevation of the outer rail at a velocity of 35 miles per hour.

The value of s depends on the number of chords (n) and is independent of the chord-length. If the angle s were selected from the table, this would fix the number n, and we must then choose the chord-length c so as to give the proper value of D_{s}. Thus, if s were assumed $=9^{\circ} 10^{\prime}$ then $n=10$, and $c=18 \mathrm{ft}$. or 19 ft ., giving $D_{s}=10^{\circ} 11^{\prime} 54^{\prime \prime}$ or $9^{\circ} 39^{\prime} 36^{\prime \prime}$ to suit a 10 degree curve, and making the length ($n c$) of the spiral either 170 or 180 ft ., according to the spiral selected.

The coordinates (x, y) depend on the values of both n and c. They are used in solving the problems of the spiral, being taken directly from Table III. for this purpose, under the value of c and opposite the value of n.

CHAPTER III.

ELEMENTARY PROBLEMS.

II. To find the length C of any long chord beginning at the point of spiral S. Fig. 4. Let L be the other extremity of the long chord, x, y the coordinates of L , and i the deflection angle YSL at S for the point L .

Then
or

The values of x, y and i are found in Tables III. and II.

Example. In the spiral of chordlength $=30 \mathrm{ft}$. what is the length of the long chord from S to the roth point?

Fig. 4.

12. To find the lengths of the tangents from the points S and L to their intersection E. Fig. 4. Let x, y be the coordinates of L, and s the
spiral angle for the point L . Then $s=$ the deflection angle between the tangents at E , and

$$
\begin{equation*}
\mathrm{LE}=\frac{x}{\sin s} \quad \mathrm{SE}=y-x \cot s \tag{2.}
\end{equation*}
$$

The values of x, y and s are found in Tables III. and IV.

Example. In the spiral of chord-length 40 extending to the 9 th point, what are the tangents LE and SE ?

$\therefore \quad \mathrm{SE}=233.562$
13. To find the length C of any long chord KL. Fig. 4. Let x, y be the coordinates of L, and x^{\prime}, y^{\prime} the coordinates of K ; and let a be the angle LKN which LK makes with the main tangent, and i the deflection angle KLE', and i^{\prime} the deflection angle LKE'. Then $a=(s-i)$ at the point $\mathrm{L},=\left(s^{\prime}+i^{\prime}\right)$ at K .

$$
\begin{align*}
& \mathrm{KL}=\frac{\mathrm{KN}}{\cos \mathrm{LKN}} \quad \text { or } \\
& C=\frac{y-y^{\prime}}{\cos a} \tag{3.}
\end{align*}
$$

Example. In the spiral of chord-length 18 what is the
length of the long chord from point 12 to point 20 ? Here $\mathrm{K}=12$ and $\mathrm{L}=20=n$.

From Table III., y 346.476 U N IV ERSIT $y^{\prime} 214.847$

$$
131.629
$$

From Table II., $s^{\prime} 13^{\circ}$
$i^{\prime} \quad 10^{\circ} \cdot 07^{\prime} 23^{\prime \prime}$

$$
\therefore a \quad 23^{\circ} \circ 7^{\prime} 23^{\prime \prime} \log \cos 9.963629
$$

$C=143.13$
14. To find the lengths of the tangents from any two points L and K to their intersection at E^{\prime}. Fig. 4. Let s, s^{\prime} be the spiral angles for the points L and K respectively. Then $\left(s-s^{\prime}\right)=$ the deflection angle between tangents at E^{\prime}. Having first found $C=$ LK by the last problem we have in the triangle LKE'

$$
\mathrm{LE}^{\prime}=\frac{C \sin i^{\prime}}{\sin \left(s-s^{\prime}\right)} \quad \mathrm{KE}^{\prime}=\frac{C \sin i}{\sin \left(s-s^{\prime}\right)} \ldots \text { (4.) }
$$

Example. In the spiral of chord-length 18 what are the tangents for the points 12 and 20?

By last example, C
\log
2. 155723

From Table IV.,

$$
\left(s-s^{\prime}\right) 35^{\circ}-13^{\circ}=22^{\circ} \log \sin \frac{9.573575}{2.582148}
$$

From Table II., $\quad i^{\prime} \quad 10^{\circ} 07^{\prime} 23^{\prime \prime} \log \sin 9.2449^{27}$
$\therefore \mathrm{LE}^{\prime}=67.15$

1.827075
2.582148

Again:
Table II.,
$i{ }^{1} 1^{\circ} 52^{\prime} 37^{\prime \prime} \log \sin 9.313468$
$\mathrm{KE}^{\prime}=78.635$

1. 895616

2. Given : A circular curve and spirals joining two tangents, to find the tangent distance $T_{s}=$ VS. Fig. 5 .

Let S be the point of spiral, V the intersection of the tangents, SL the spiral, LH one half the circular curve, and O its centre. In the diagram draw GLI parallel to the tansvgent VS, and GN, LM, and OI perpendicular to VS. Join OL and OV .
Fig. 5.
Then

$$
\mathrm{IOL}=s ; \mathrm{IOV}=\frac{1}{2} \Delta ; \mathrm{OL}=R^{\prime} ; \mathrm{SM}=y ; \mathrm{LM}=x
$$

Now

$$
\begin{gathered}
\mathrm{SV}=\mathrm{SM}+\mathrm{NV}+\mathrm{MN} \\
\mathrm{NV}=\mathrm{GN} \cdot \tan \mathrm{VGN}=x \tan \frac{1}{2} \Delta \\
\mathrm{MN}=\mathrm{GL}=\mathrm{OL} \frac{\sin \mathrm{LOG}}{\sin \mathrm{OGI}}=R^{\prime} \frac{\sin \left(\frac{1}{2} \Delta-s\right)}{\cos \frac{1}{2} \Delta}
\end{gathered}
$$

But

Hence

$$
T_{s}=y+x \tan \frac{1}{2} \Delta+R^{\prime} \frac{\sin \left(\frac{1}{2} \Delta-s\right)}{\cos \frac{1}{2} \Delta}
$$

Examplé. Let the degree of the circular curve be $D^{\prime}=7^{\circ} 20^{\prime}$, and the angle between tangents, $\Delta \doteq 42^{\circ}$. Let the spiral values be $c=2.3 ; n=9 . \ddots s=7^{\circ} .30^{\prime}$. Then by the last equation and the tables,

$y \bigcirc 206.627$			
		\log	0.978743
	21°	$l o g \tan$	9.584177
	36.55		0.562920

16. When an approximate value of T_{3} is only required we may employ a more convenient formula derived from the fact that the line OI produced bisects the spiral SL very nearly, and that the ordinate to the spiral on the line OI, being only about $\frac{1}{8} x$, may be neglected. Thus,

Approx. $\quad T_{0}=R^{\prime} \tan \frac{1}{2} \Delta+\frac{1}{2} n c$.
Example. Same as above.

Remark. This formula, eq. (6) when R^{\prime} is taken equal to the radius corresponding to the degree of curve D_{s} for ($n+1$), gives practically correct results. But as in practice, the value of R^{\prime} will differ somewhat frcm the radius of D_{s}, so the value of T, derived from this formula will differ more or less from the true value, as in the last example.
17. Given : the tangent distance $T_{s}=\mathrm{SV}$, and the angle \triangle, and the length of spiral SL, to find the radius R^{\prime} of the circular curve, LH, Fig. 5. The length
of spiral is expressed by $n c$, hence we have from the last equation.
approx.,

$$
\begin{equation*}
R^{\prime}=\left(T_{0}-\frac{1}{2} n c\right) \cot \frac{1}{2} \Delta . \tag{7.}
\end{equation*}
$$

After R^{\prime} is thus found, the values of n and c are to be determined, such that, while their product equals the given length of spiral as nearly as may be, the value of D_{s} for ($n+1$) shall correspond nearly with R^{\prime}. The values of n and c are quickly found by reference to Table III.

Examble. Let $T_{0}=406, \Delta=42^{\circ}$, and $n c=170$.

$$
\begin{array}{lrr}
T_{0}-\frac{1}{2} n c & 32 \mathrm{I} & \log 2.5065 \\
\frac{1}{2} \Delta & { }_{21} \mathrm{I}^{\circ} \\
\therefore \quad R^{\prime}=\text { say }, 6^{\circ}{ }_{51} I^{\prime} \text { curve, } & \frac{0.4158}{2.9223}
\end{array}
$$

By reference to Table III., we find that when $n=8$ and $c=22$, the product $n c$ being 176 , the value of D_{s} for $(n+1)$ is $6^{\circ} 49^{\prime} 19^{\prime \prime}$, and this is the best spiral to use in this case. But as this spiral is longer than our assumed one, we should decrease the value of R^{\prime} somewhat, if we would nearly preserve the given value of T_{s}. For instance, assume $R^{\prime}=$ radius of $6^{\circ} 54^{\prime}$ curve, and using the same spiral, calculate by eq. (4) the resulting value of T_{s}, and we shall find $T_{s}=408.646$.

As this is an exact value of $T:$ for the values of R^{\prime}, n and c last assumed, and is also a close approximation to the value first given, it will probably answer the purpose completely. If, however, for any reason the precise value of $T_{s}=406$ is required, we may find the precise radius which will give it by the following problem.
18. Given: a curve, and spiral, and tangent-distance,
T_{s}, to find the difference in R^{\prime} corresponding to any small difference in the value of T_{0}.

If in eq. (5) we assume a constant spiral, and give to R^{\prime} two values in succession and subtract one resulting value of T_{0} from the other, we shall find for their difference,

$$
\begin{equation*}
\text { diff. } T_{s}=\frac{\sin \left(\frac{1}{2} \Delta-s\right)}{\cos \frac{1}{2} \Delta} \text { diff. } R^{\prime} \tag{8.}
\end{equation*}
$$

Hence

$$
\text { diff. } R^{\prime}=\frac{\cos \frac{1}{2} \Delta}{\sin \left(\frac{1}{2} \Delta-s\right)} \text { diff. } T_{s} .
$$

Example. When $R^{\prime}=\operatorname{rad} .6^{\circ} 54^{\prime}$ curve, $n=8, c=$ $22, T_{s}=408.646$; what radius will make $T_{s}=406$ with the same spiral ?

Eq. (9) diff. $T_{s}=2.646$

$$
\frac{1}{2} \triangle, 21^{\circ}
$$

$$
\left(\frac{1}{2} \Delta-s\right), 15^{\circ}
$$

$\log 0.422590$
$\log \cos 9.970152$
a. c. $\log \sin 0.587004$
\therefore diff. R^{\prime}
9.544
0.979746
\therefore Required radius $=82$ r. 33^{2}, or $6^{\circ} 58^{\prime} 49^{\prime \prime}$ curve.
Remark. Care must be taken to observe whether in thus changing the value of R^{\prime}, the value of D^{\prime}, the degree of curve, is so far changed as to require a different spiral according to the rule for the selection of spiral, \S ro. Should this be the case (which is not very likely), we may adopt the new spiral, and proceed with a new calculation as before.
19. Given : a circular curve with spirals joining two tangents, to find the external distance $E_{s}=\mathrm{VH}$, Fig. 5.

Let SL be the spiral, LH one-half the circular curve, and O its centre.

Then $\mathrm{VH}=\mathrm{VG}+\mathrm{GO}-\mathrm{OH}$.
But $\quad \mathrm{VG}=\frac{\mathrm{GN}}{\cos \mathrm{VGN}}=\frac{x}{\cos \frac{1}{2} \Delta}$, and in the triangle
$\mathrm{GOL}, \mathrm{GO}=\mathrm{LO} \frac{\sin \mathrm{OLI}}{\sin \mathrm{LGO}}=R^{\prime} \frac{\cos s}{\cos \frac{1}{2} \Delta} ;$
$\therefore \quad E_{s}=\frac{x}{\cos \frac{1}{2} \Delta}+R^{\prime} \frac{\cos s}{\cos \frac{1}{2} \Delta}-R^{\prime}, \quad \cdot(\mathrm{ro}$.)
or for computation without logarithms

$$
\begin{equation*}
E_{s}=\frac{x+R^{\prime}\left(\cos s-\cos \frac{1}{2} \Delta\right)}{\cos \frac{1}{2} \Delta} \tag{II.}
\end{equation*}
$$

Example. Let $D^{\prime}=7^{\circ} 20^{\prime}, \Delta=42^{\circ}$, and for the spiral let $n=9, c=23$, giving $s=7^{\circ} 30^{\prime}$, and for $(n+1), D_{s}=7^{\circ} 15^{\prime} 04^{\prime \prime}$.

Eq. (10) $x \quad \log 0.978743$

	10.200	1.008591
$R^{\prime} \quad 7^{\circ} 20^{\prime}$	10aviar \log	2.893118
$s 7^{\circ} 30^{\prime}$	mimio set $0 \log \cos$	9.996269
$\frac{1}{2} \triangle 2 \mathrm{I}^{\circ}$	dea. a. c. $\log \cos$	0.029848
	830.300	2.919235
sum	840.500	
$R^{\prime} \quad 7^{\circ} 20^{\prime}$	78 r .840	
	58.660	

20. Given : The angle Δ at the vertex and the distance $\mathrm{VH}=E_{s}$, to determine the radius R^{\prime} of a circular curve with spirals connecting the tangents and passing through the point H. Fig. 5.

Solving eq. (ir) for R^{\prime} we have

$$
R^{\prime}=\frac{E_{s} \cos \frac{1}{2} \Delta-x}{\cos s-\cos \frac{1}{2} \Delta} \cdot . . .
$$

But as this expression involves x and s of a spiral dependent on the value of R^{\prime} we must first find R^{\prime} approximately, then select the spiral, and finally determine the exact value of R^{\prime} by eq. (12). The radius R of a simple curve passing through the point H is a good approximation to R^{\prime}. It is found by eq. (27) Field Engineering:

$$
R=\frac{E}{\operatorname{exsec} \frac{1}{2} \Delta}
$$

or the degree of curve D may be found by dividing the external distance of a I° curve for the angle \triangle by the given value of E_{8}. But evidently the value of D^{\prime} will be greater than D, and we may assume D^{\prime} to be from ro' to I° greater according to the given value of Δ, the difference being more as Δ is less. We now select from Table III. a value of D_{s} suited to D^{\prime} so assumed, and corresponding at the same time to any desired length of spiral. Since D_{s} so selected corresponds to $(n+1)$ we take the values of n and x from the next line above D_{s} in the table, find the value of s from Table IV., and by substituting them in eq. (12) derive the true value of R^{\prime} for the spiral selected.

Example. Let $\Delta=42^{\circ}$ and $E_{s}=70$, to find the value of R^{\prime} with suitable spirals.

From table of externals for I° curve, when $\triangle=42^{\circ}$ $E=407.64$, which divided by 70 gives $5^{\circ} .823$; or $D=$
$5^{\circ} 50^{\prime}$. Assume D^{\prime} say 20^{\prime} greater, giving $D^{\prime}=6^{\circ} 10^{\prime}$ approx. If we desire a spiral about 300 feet long we find, Table III., $n=10, c=30$, and for $(n+1) D_{s}=$ 6° o6' $49^{\prime \prime}$. For $n=10, s=9^{\circ} 10^{\prime}$.

$$
\begin{array}{cc}
\text { Eq. (12) } \cos \frac{1}{2} \Delta, 21^{\circ} & .9335^{\circ} \\
E_{0} & \frac{70}{65.35060} \\
x & \frac{16.768}{48.5826} \quad \log 1.68648 \mathrm{I}
\end{array}
$$

Proof. Take the exact radius of a $6^{\circ} 20^{\prime}$ curve and the above spiral and calculate E_{s} by eq. (io) or (ir). We shall obtain $E_{s}=69.97$. Again: if we desire a spiral of 200 feet, we find, Table III., $n=8, c=25$, and for ($n+1$) $D_{s}=6^{\circ}$, and by eq. (12) $R^{\prime}=\mathrm{rad}$. of (say) $6^{\circ} \mathrm{O}^{\prime}$ curve ; and by way of proof we find $E_{0}=69.96$.

Again: if we desire a spiral of about 400 feet, we find, Table III., $n=12, c=33, s=13^{\circ}$, and for $(n+1)$ $D_{s}=6^{\circ} 34^{\prime} \circ 7^{\prime \prime}$. Hence by eq. (12) $R^{\prime}=$ rad. of (say) $6^{\circ} 5^{0^{\prime}}$ curve. By way of proof we find eq. (ıo) $E_{s}=$ 69.95 .

Remark. It is thus evident that a variety of curves with suitable spirals will satisfy the problem, but D^{\prime} is increased as the spiral is lengthened-for in the example, with a 200 ft . spiral, $D^{\prime}=6^{\circ} 02^{\prime}$; with a 300 ft . spiral, $D^{\prime}=6^{\circ} 20^{\prime}$; and with a $39^{6} \mathrm{ft}$. spiral, $D^{\prime}=$ $6^{\circ} 50^{\prime}$. Therefore the length of spiral, as well as the value of Δ, must be considered in first assuming the value of D^{\prime} as compared with D of a simple curve.
21. In case the value of R^{\prime}, as calculated by eq. (12), should give a value to D^{\prime} inconsistent with the spiral assumed, we may easily ascertain by consulting the table what spiral will be suitable. Choosing a spiral of the same number of chords, but of a different chordlength c, we may calculate R^{\prime} (a new value) as before ; or the work may be somewhat abbreviated by the following method:

Given: a change in the value of x, eq. (12) to find the corresponding change in the value of $R^{\prime} ; n$ being constant.

If the values of E_{s}, Δ, and s remain unchanged, we find, by giving to x any two values, and subtracting one resulting value of R^{\prime} from the other,

$$
\text { diff. } R^{\prime}=\frac{-\operatorname{diff} x}{\cos s-\cos \frac{1}{2} \Delta} \cdot \cdots \cdot(\mathrm{I} 3 .)
$$

that is, R^{\prime} increases as x decreases, and the differences bear the ratio of $\frac{1}{\cos s-\cos \frac{1}{2} \Delta}$.

Example. Let $\Delta=42^{\circ}, E_{s}=70$, and for the spiral let $n=10, c=30, s=9^{\circ} 10^{\prime}$, as in the last example, giving $R^{\prime}=905.55$; to find the change in R^{\prime} due to changing c from 30 to 29 .

$$
\begin{aligned}
& \text { Eq. (13) for } c=30, x=16.768 \\
& \text { for } c=29, x=16.209 \\
& \begin{array}{lll}
\text { diff. } x & .559 & \log 9.7474
\end{array} \\
& \cos s-\cos \frac{1}{2} \Delta \text { (as before) } .05365 \quad \log 8.7296 \\
& \therefore \text { diff. } R^{\prime} \\
& \text { old value } \\
& 10.4^{2} \\
& 1.0178 \\
& \therefore \text { new } R^{\prime} \\
& 9^{15} 5.97 D^{\prime}=(\text { say }) 6^{\circ}{ }^{\prime} 6^{\prime},
\end{aligned}
$$

which agrees well with $D_{s}=6^{\circ} 19^{\prime} 29^{\prime \prime}$ for $(n+1)$ in the new spiral.

If we prove this result by calculating the value of E_{s} for these new values by eq. (10) we shall find $E_{s}=$ 69.93 .

The slight discrepancy between these calculated values of E_{s} and the original is due solely to assuming the value of D^{\prime} at an exact minute instead of at a fraction.

CHAPTER IV.

SPECIAL PROBLEMS.

22. Given : two tangents joined by a simple curve, to find a circular arc with spirals joining the same tangents, that will replace the simple curve on the same ground as nearly as may be, and preserve the same length of line. Fig. 6.

To fulfill these conditions it is evident that the new curve must be outside of the old one at the middle point H , since the spirals are inside of the simple curve at its tangent points ; also, the radius of the new curve must be less than that of the old one, otherwise the circle passing outside of H would cut the given tangents.

Let SV, Fig. 6 be one tangent, and V the vertex.
 Let AH be one half the simple curve, and O its centre. Let SL be one spiral, LH^{\prime} one half the new circular
arc, and O^{\prime} its centre. Draw the bisecting line VO, the radii $\mathrm{AO}=R$ and $\mathrm{LO}^{\prime}=R^{\prime}$, and the perpendicular $\mathrm{LM}=x . \quad$ Then $\mathrm{MS}=y$. Produce the arc $\mathrm{H}^{\prime} \mathrm{L}$ to A^{\prime} to meet the radius $\mathrm{O}^{\prime} \mathrm{A}^{\prime}$ drawn parallel to OA, and let $\frac{1}{2} \triangle=$ the angle $\mathrm{AOH}=\mathrm{A}^{\prime} \mathrm{O}^{\prime} \mathrm{H}^{\prime}$. Let $s=$ the angle $\mathrm{A}^{\prime} \mathrm{O}^{\prime} \mathrm{L}=$ the angle of the spiral SL. Let $h=$ the radial offset HH^{\prime} at the middle point of the curve. Draw $\mathrm{O}^{\prime} \mathrm{N}$ and LF perpendicular to OA, LF intersecting $\mathrm{O}^{\prime} \mathrm{A}^{\prime}$ at I.
a. To find the radius R^{\prime} of the new arc LH^{\prime} in terms of a selected spiral SL.

We have from the figure $\mathrm{AO}=\mathrm{ML}+\mathrm{FN}+\mathrm{NO}$. But $\mathrm{AO}=R, \mathrm{ML}=x, \mathrm{FN}=\mathrm{LO}^{\prime} \cos s=R^{\prime} \cos s$ and $\mathrm{NO}=\mathrm{O}^{\prime} \mathrm{O} \cos \frac{1}{2} \Delta=\left(\mathrm{OH}^{\prime}-\mathrm{O}^{\prime} \mathrm{H}^{\prime}\right) \cos \frac{1}{2} \Delta=$ $\left(h+R-R^{\prime}\right) \cos \frac{1}{2} \Delta$; and substituting we have

$$
R=x+R^{\prime} \cos s+\left(h+R-R^{\prime}\right) \cos \frac{1}{2} \Delta . \quad \text { (14.) }
$$

whence

$$
\begin{equation*}
R^{\prime}=\frac{R \text { vers } \frac{1}{2} \Delta}{\cos s-\cos \frac{1}{2} \Delta}-\frac{h+\cos \frac{1}{2} \Delta+x}{\cos s-\cos \frac{1}{2} \Delta} . \tag{15.}
\end{equation*}
$$

It is found in practice that h bears a nearly constant ratio to x for all cases under the conditions assumed in this problem. Let $k=$ the ratio $\frac{h}{x}$ and the last equation may be written

$$
\begin{equation*}
R^{\prime}=\frac{R \text { vers } \frac{1}{2} \Delta}{\cos s-\cos \frac{1}{2} \Delta}-\frac{\left(k \cos \frac{1}{2} \Delta+1\right) x}{\cos s-\cos \frac{1}{2} \Delta} \tag{16.}
\end{equation*}
$$

which gives the radius of the new arc LH^{\prime} in terms of s, x and k.
b. To find the off set $h=\mathrm{HH}^{\prime}$:

From eq. (14) we derive

$$
\begin{aligned}
h \cos \frac{1}{2} \Delta= & R\left(\mathrm{r}-\cos \frac{1}{2} \Delta\right)-R^{\prime}(\mathrm{r}-\operatorname{vers} s)+ \\
& R^{\prime} \cos \frac{1}{2} \Delta-x \\
= & R\left(\mathrm{r}-\cos \frac{1}{2} \Delta\right)-R^{\prime}\left(\mathrm{r}-\cos \frac{1}{2} \Delta\right)+ \\
& R^{\prime} \operatorname{vers} s-x \\
= & \left(R-R^{\prime}\right) \text { vers } \frac{1}{2} \Delta+R^{\prime} \text { vers } s-x
\end{aligned}
$$

Hence
$h=\left(R-R^{\prime}\right) \operatorname{exsec} \frac{1}{2} \Delta+\frac{R^{\prime} \text { vers } s}{\cos \frac{1}{2} \Delta}-\frac{x}{\cos \frac{1}{2} \Delta}$
which gives the value of h in terms of s, x and R^{\prime}.
c. To find the value of $d=\mathrm{AS}$:

We have from the figure $\mathrm{SM}=\mathrm{SA}+\mathrm{NO}^{\prime}+\mathrm{IL}$. But $\mathrm{SM}=y, \mathrm{SA}=d, \mathrm{NO}^{\prime}=\mathrm{OO}^{\prime} \sin \frac{1}{2} \triangle$ and $\mathrm{IL}=$ $\mathrm{LO}^{\prime} \sin s$, and by substitution,

$$
y=\dot{d}+\left(h+R-R^{\prime}\right) \sin \frac{1}{2} \Delta+R^{\prime} \sin s
$$

Hence

$$
d_{1}=y-\left[\left(h+R-R^{\prime}\right) \sin \frac{1}{2} \Delta+R^{\prime} \sin s\right] \text { (I8.) }
$$

which gives the distance on the tangent from the point of curve A to the point of spiral S.
d. To compare the lengths of the new and old lines :

$$
\begin{equation*}
\mathrm{SAH}=\mathrm{SA}+\mathrm{AH}=d+100 \frac{\frac{1}{2}}{D} \tag{19.}
\end{equation*}
$$

in which D is the degree of curve of AH ;

$$
\mathrm{SLH}^{\prime}=\mathrm{SL}+\mathrm{LH}^{\prime}=n \cdot c+100^{\frac{1}{2} \Delta-s} \frac{\mathrm{D}^{\prime}}{(20 .)}
$$

in which D^{\prime} is the degree of curve of LH^{\prime}.

If the spiral and arc have been properly selected, the two lines will be of equal length or practically so.

The last two equations assume the circular curves to be measured by 100 foot chords in the usual manner, but when the curves are sharp it is often desirable that they should agree in the length of actual arcs, especially where the rail is already laid on the simple curve. For this purpose we use the formulæ

$$
\begin{aligned}
& \mathrm{SAH}(\operatorname{arc})=d+R \cdot \frac{\Delta}{2} \cdot \frac{\pi}{180} \\
& \mathrm{SLH}^{\prime}(\operatorname{arc})=n \cdot c+R^{\prime}\left(\frac{\Delta}{2}-s\right) \frac{\pi}{180}(22 .)
\end{aligned}
$$

in which the angle is expressed in degrees and decimals. If the odd minutes in the angle cannot be expressed by an exact decimal of a degree, the angle should be reduced to minutes, and the divisor of π changed from 180 to 10800.

The value of $\frac{\pi}{180}$ is .01 $74533 \quad \log 8.241877$

$$
\text { " } \quad \frac{\pi}{10800} \text { is } .00029089 \text { " } 6.463726 .
$$

The length of spiral is given by chord measure in the last equations, since the chords are so short and subtend such small angles that the difference between chord and arc is not material to the problem.
e. To select a spiral in a given case, we require to know approximately the value of D^{\prime}, and to select the spiral (n, c) such that the value of D_{s} for $(n+1)$ shall not differ greatly from the value of D^{\prime}. To aid in find-
ing approximate values of D^{\prime} and k, Table V . has been prepared for curves ranging from 2° to 16° and central angles (\triangle) ranging from 10° to 80°.

Assume s at pleasure (less than $\frac{1}{2} \Delta$), which fixes the value of n. Then inspect Table V. opposite n for values of D and Δ next above and below the values of D and Δ in the given problem, and by inference or interpolation decide on the probable values of k and D^{\prime}. Then in Table III. select that value of c which gives D_{s} for ($n+1$) most nearly agreeing with D^{\prime}. Now calculate R^{\prime} by eq. (16), and as this will usually give the degree of curve D^{\prime} fractional, take the value of D^{\prime} to the nearest minute only, and assume the corresponding value of R^{\prime} as the real value of R^{\prime}. A table of radii makes this operation very simple.

But should it happen that D^{\prime} differs too widely from from $D_{s(n+1)}$ to make an easy curve, increase or diminish the chord-length c by x , thus giving a new value to x in eq. (16), and also a new value of $D_{s(n+1)}$ with which to compare the resulting D^{\prime}. In changing x only the last term of eq. (16) is affected, and the first term does not require recalculation.
f. When the value of R^{\prime} is decided, substitute it in eq. (17) and calculate h. But if it happens that the value of R^{\prime} selected differs not materially from the result of eq. (16), we have at once $h=k x$; or in case the value of R^{\prime} is changed considerably from the result of eq. (16), the corresponding change in h will be

$$
\text { diff. } h=-\frac{\cos s-\cos \frac{1}{2} \Delta}{\cos \frac{1}{2} \Delta} \text { diff. } R^{\prime}, .\left(22 \frac{1}{2}\right)
$$

which may therefore be applied as a correction to $h=k x$, and we thus avoid the use of eq. (17). Eq. (22 $\frac{1}{2}$) is de-
rived from eq. (15) by supposing h to have any two values, and subtracting the resulting values of R^{\prime} from each other. Note that h diminishes as R^{\prime} increases, and vice versa.

When R^{\prime} and h are found, proceed to find d by eq. (18), and the length of lines by eq. (19), (20), or by $(21),(22)$, as may be preferred. But to produce equality of actual arcs, k must be a little greater than when equality by chord-measure is desired.

Should the lines not agree in length so nearly as desired, a change of one minute \pm in the value of D^{\prime} may produce the desired result, but any such change necessitates, of course, a recalculation of h and d.

The values of k in Table V. appear to vary irregularly. This is due to the selection of D^{\prime} to the nearest minute, and also to the choice of spiral chord-lengths, c, not in an exact series. The reader is recommended to supplement this table by a record of the problems he solves, so that the values of R^{\prime} and k may be approximated with greater certainty.

Example. Given a 6° curve, with a central angle of $\Delta=50^{\circ} 12^{\prime}$, to replace it by a circular arc with spirals, preserving the same length of line. Assume $s=7^{\circ} \cdot 30^{\prime}$ giving $n=9$.

Since 6° is an average of 4° and 8°, while $50^{\circ} 12^{\prime}$ is nearly an average of 40° and 60°, we examine Table V. under 4° curve and 8° curve, and opposite $\triangle=40^{\circ}$ and 60° on the same line as $s=7^{\circ} 30^{\prime}$, and take an average of the four values of $D_{s(n+1)}$, thus found; also of the four values of k; we thus find approx. $k=$.0885 , and $D^{\prime}=6^{\circ} 18^{\prime} \pm$. Now looking in Table III., opposite $n=9$, we find that when $c=26, D_{s(n+1)}=$ $6^{\circ} 24^{\prime} 48^{\prime \prime}$, we therefore assume $c=26$, and proceed to calculate R^{\prime} by eq. (16).

Eq. (16) $\cos s 7^{\circ} 30^{\prime}$ $\cos \frac{1}{2} \Delta \quad 25^{\circ} 06^{\prime}$	$\begin{array}{r} .99144 \\ .90557 \end{array}$	
	. 085887 a. c. \log	1.066159
$R \quad 6^{\circ}$	\log	2.980170
vers $\frac{1}{2} \triangle 25^{\circ}$ o6 6^{\prime}	\log	8.975116
elce	1050.6 log	3.021445
$\cos s-\cos \frac{1}{2} \triangle$	a. c. \log	1.066159
$\underline{r}+k \cos \frac{1}{2} \Delta=1.080$	001×7.38	0.033424
x,		1.031989
	135.4	2.131572
$\therefore R^{\prime}\left(\right.$ say $\left.6^{\circ} 16^{\prime}\right)$	915.2	

$\mathrm{Eq.}_{R^{\prime}}(17) \quad R 6^{\circ} 6^{\circ} 16^{\prime}$	$\begin{aligned} & 955 \cdot 366 \\ & 914 \cdot 750 \end{aligned}$		
($R-R^{\prime}$)	40.616	\log	1. 608697
exsec $\frac{1}{2} \triangle 25^{\circ}$ o6 ${ }^{\prime}$		\log	9.018194
	8.42 4.235	10 g	0.626891
$R^{\prime} \quad 6^{\circ} 16^{\prime}$		\log	2.961303
vers $s, \quad 7^{\circ} 30^{\prime}$,		10 g	7.932227
$\cos \frac{1}{2} \Delta \quad 25^{\circ} 06^{\prime}$		log	0.043079
	8.642	\log	0.936609
	12.877		
x		\log	1.031989
$\cos \frac{1}{2} \triangle \quad 25^{\circ} 06^{\prime}$		10 g	0.043079
	11.887		1.075068
$\therefore h$	0.990		
Eq. (18) $\left(R-R^{\prime}\right)$	40.616		
	41.606	\log	1. 619156
$\sin \frac{1}{2} \triangle \quad 25^{\circ} 06^{\prime}$		10 g	9.627570
40asi	17.649	\log	1.246726

$R^{\prime} \quad 6^{\circ} 16^{\prime}$
$\sin 57^{\circ} 30^{\prime}$
y
$\therefore d$
Eq. (19) $\frac{25.1^{\circ} \times 100}{6}=$ $\therefore \mathrm{SAH}$
$\log 2.961303$
$\log 9.115698$
$\log 2.077001$
119.399
137.048
$\frac{{ }^{2} 33.579}{96.53{ }^{1}}$
418.333
514.864

Eq. (20) $\left(\frac{1}{2} \triangle-s\right)=1056^{\prime} \times 100$ D^{\prime} 376^{\prime}
n. c 9×26
280.851 234.
$\therefore \mathrm{SLH}^{\prime}$
514.85 I

Difference
$-.013$
actual $k=\frac{h}{x}=0.092$

Comparison of actual arcs.

Eq. (21) $25.1^{\circ} \log 1.399674$ Eq. (22) $17.6^{\circ} \log 1.2455^{13}$ $\mathrm{r}^{\circ} \log 8.241877$ $R \quad 6^{\circ} \log 2.980170$

$\log 5.023664$ $\log 2.575188$
$\log 2.448476$
23. Given : a simple curve joining two tangents, to move the curve inward along the bisecting line VO so that it may join a given spiral without change of radius. Fig. 7.

Let SL be the given spiral, AH one-half of the given curve, and HL a portion of the same curve in its new position, and compounded with the spiral at L.

To find the distance $h=\mathrm{HH}^{\prime}=\mathrm{OO}^{\prime}$:

Since the new radius is equal to the old one, or $R^{\prime}=R$, we have from eq. (17) by changing the sign
 of h, since it is taken in the opposite direction,

$$
\begin{equation*}
h=\frac{x-R \text { ers } s}{\cos \frac{1}{2} \Delta} \tag{23.}
\end{equation*}
$$

To find the distance $d=\mathrm{AS}$:
Changing the sign of h in eq. (18) and making $R^{\prime}=$ R we have

$$
d=y-\left(R \sin s-h \sin \frac{1}{2} \Delta\right)
$$

This problem is best adapted to curves of large radius and small central angle.

Example. Given, a curve $D=1^{\circ} 40^{\prime}$ and $\triangle=$ $26^{\circ} 40^{\prime}$, and a spiral $s=1^{\circ}, n=3$, and $c=40$, to find l and d and the length LH^{\prime}.
Eq. (23) $R I^{\circ} 4^{\prime}$
$\log 3.53^{6} 3$
verse $s \quad I^{\circ}$
$\log 6.1827$
$\cos \frac{1}{2} \triangle 13^{\circ} 20^{\prime}$
a. c. $\log 0.0119$

24. Given, a simple curve joining two tangents, to compound the curve near each end with an arc and spiral joining the tangent without disturbing the middle portion of the curve. Fig. 8.

Let H be the middle point of the given curve, Q the point of compounding with the new arc, and L the point where the new arc joins the spiral SL.

Let $s=$ the spiral angle, and let $0=A O Q$. Now in this figure AOQS will be analogous to AOH'S of Fig.6, if in the latter we suppose H^{\prime} to coincide with H or $h=0$. If, therefore, in eq. (15) we write 0 for $\frac{1}{2} \Delta$ and make $h=0$, we have for the new radius $O^{\prime} Q$,

$$
\begin{equation*}
R^{\prime}=\frac{R \text { vers } 0-x}{\cos s-\cos 0} \tag{25.}
\end{equation*}
$$

in terms of θ and the spiral assumed. But as the value of D^{\prime} resulting is likely to be fractional and must be adhered to, it is preferable to assume R^{\prime} a little less than R, select a suitable spiral and calculate the angle 0 . Resolving eq. (${ }^{7} 7$) after making $h=0$ and replacing $\frac{1}{2} \Delta$ by 0 , we have

$$
\text { vers } 0=\frac{x-R^{\prime} \text { vers } s}{R-R^{\prime}}
$$

Eq. (26) R	2°	30^{\prime}	2292.01
R^{\prime}	2°	40^{\prime}	2 I 48.79
$R-R^{\prime}$	$\underline{143.22}$		
x			

$\log 2.156004$ $\log 0.471203$
$.020663 \quad \log 8.315199$
a. c. $\log 7.843996$ $\log 6.978536$

- $\log 3.33^{2193}$
$\log 8.154725$
$\log 2.156004$ 9.05^{2192}
1.208196
3.332193
8.639680
1.971873
y
$\therefore d$
AH
$\begin{array}{ll}R^{\prime} & 2^{\circ} 40^{\prime} \\ \sin s & 2^{\circ} 30^{\prime}\end{array}$

$\mathrm{LQ}, \quad 0-s=3^{\circ} 5^{\prime} 30^{\prime \prime}$ I 49.06
$\mathrm{QH}, \frac{1}{2} \triangle-0=\mathrm{II}^{\circ}$ OI $^{\prime} 30^{\prime \prime}, 44 \mathrm{I} .00775 .060$
Difference

25. Given : a compound curve joining two tangents, to replace it by another with spirals, preserving the same length of line. Fig. g.
Let $\Delta_{2}=\mathrm{AO}_{2} \mathrm{P}$, the angle of the arc AP , and $\Delta_{1}=$ $\mathrm{PO}_{1} \mathrm{~B}$, the angle of the arc PB. Let $R_{2}=\mathrm{A} \mathrm{O}_{2}$, and $R_{1}=\mathrm{BO}_{1}$.

Adopting the method of \& 22 , the offset h must be made at the point of compound curve P instead of at the middle point. Considering first the arc of the larger radius AO_{2}, the formulæ of \S_{22} will be made to

Fig. 9. apply to this case by writing Δ_{z} in place of $\frac{1}{2} \Delta_{2}$, and R_{2} in place of R, whence eq. (16)
$R_{2}^{\prime}=\frac{R_{2} \text { vers } \Delta_{2}}{\cos s-\cos \Delta_{2}}-\frac{\left(k \cos \Delta_{2}+1\right) x}{\cos s-\cos \Delta_{2}} \ldots$ (28.)
and eq. (17)
$h=\left(R_{2}-R_{2}^{\prime}\right)$ exsec $\Delta_{2}+\frac{R_{2}^{\prime} \text { vers } s}{\cos \Delta_{2}}-\frac{x}{\cos \Delta_{2}}$
and eq. (18)
$d=y-\left[\left(h+R_{2}-R_{2}^{\prime}\right) \sin \Delta_{2}+R_{2}^{\prime} \sin s\right]$. ((30.)

But in considering the second arc PB , we must retain the value of h already found in eq. (29) in order that the arcs may meet in P^{\prime}. We therefore use eq. (15) which, after the necessary changes in notation, becomes
$R_{1}^{\prime}=\frac{R_{1} \text { vers } \Delta_{1}}{\cos s-\cos \Delta_{1}}-\frac{h \cos \Delta_{1}+x}{\cos s-\cos \Delta_{1}}, \ldots$. (3r.)
which value of $R_{1}{ }^{\prime}$ must be adhered to.
The spiral selected for use in the last equation is independent of the spiral just used in connection with $R_{2}{ }^{\prime}$. It should be so selected that while suitable for R_{1}^{\prime} its value of x may be equal to $\frac{h}{k}$ as nearly as may be, the value of k being inferred from Table V. for D^{\prime} and $2 \Delta_{1}$.

Assuming the value of R_{1}^{\prime}, found by eq. (31), even though $D_{1}{ }^{\prime}$ be fractional, we may verify the value of h by

$$
h=\left(R_{1}-R_{1}^{\prime}\right) \text { exsec } \Delta_{1}+\frac{R_{1}^{\prime} \text { vers } s}{\cos \Delta_{1}}-\frac{x}{\cos \Delta_{1}}(32 .)
$$

and then proceed to find $d^{\prime}=\mathrm{BS}^{\prime}$ by

$$
d^{\prime}=y-\left[\left(h+R_{1}-R_{1}^{\prime}\right) \sin \Delta_{1}+R_{1}^{\prime} \sin s\right](33 .)
$$

Example. Given the compound curve $D_{1}=8^{\circ}$., $\Delta_{1}=$ 29° and $D_{2}=6^{\circ}, \Delta_{2}=25^{\circ} 06^{\prime}$: to replace it by another compound curve connected with the tangents by spirals.

Considering first the 6° branch of the curve, we may assume the spiral $s=7^{\circ} 30^{\prime}, n=9, c=26$. This part of the problem is then identical with the example given in $\S 22$, by which we find $h=.990$ and $d=96.53 \mathrm{r}$.

To select a spiral for the 8° branch, having reference at the same time to this value of h; we find in Table V.
under $D=8^{\circ}$ and opposite $\triangle=2 \Delta_{1}=58^{\circ}$ or say 60°, that the given value of h falls between the tabular values of h for $n c=9 \times 20$, and $n c=10 \times 22$. We therefore infer that the spiral $n c=9 \times 21$ is most suitable to this case. Adopting this, we have

For the methods of computing the lengths of lines, see $\S 22$.
26. Given : a compound curve joining two tangents, to move the curve inward along the line P_{2} so that spirals may be introduced without changing the radii. Fig. 10.

The distance $h=\mathrm{PP}^{\prime}$ is found for the arc of larger

Fig. 10.
radius AO_{2} by the following formula derived by analogy from eq. (23):

$$
\begin{equation*}
h=\frac{x-R_{2} \text { vers } s}{\cos \Delta_{2}} \tag{34.}
\end{equation*}
$$

and for the distance $d=\mathrm{AS}$ we have analogous to eq. (24):

$$
\begin{equation*}
d=y-\left(R_{2} \sin s-h \sin \Delta_{2}\right) \tag{35.}
\end{equation*}
$$

Now the same value of h, found by eq. (34) must be used for the arc PB, and a spiral must be selected which will produce this value. To find the proper spiral, we have from eq. (34) after changing the subscripts,

$$
x=R_{1} \operatorname{vers} s+h \cos \Delta_{1} \quad \cdot(36 .)
$$

The last term is constant. The values of x and s must be consistent with each other, and approximately so with the value of R_{1}. Assume s at any probable value, and calculate x by eq. (36). Then in Table III. look for this value of x opposite n corresponding to s, and note the corresponding value of the chord-length c. Compare D_{s} of the table with D_{1} and if the disagreement is too great select another value of s and proceed as before.

The term R_{1} vers s may be readily found, and with sufficient accuracy for this purpose, by dividing the value of $R I^{\circ}$ vers s Table IV. by D_{1}. If the calculated value of x is not in the Table III., it may be found by interpolating values of c to the one tenth of a foot, since for a given value of s or n the values of x and y are proportional to the values of c.

When the proper spiral has been found and the value of c determined, it only remains to find the value of $d=$ $B S^{\prime}$ by

$$
d=y-\left(R_{1} \sin s-h \sin \Delta_{1}\right),
$$

in which the value of y will be taken according to the values of c and s just established.

Example. Given: $D_{2}=1^{\circ} 40^{\prime}, \Delta_{2}=13^{\circ} 20^{\prime}, D_{1}=3^{\circ}$, and $\Delta=22^{\circ} 40^{\prime}$, to apply spirals without change of radii. Fig. 10 .

Assume for the $1^{\circ} 40^{\prime}$ arc the spiral $s=1^{\circ}, n=3$, $c=40$. This part of the problem is then identical with the example given in \S_{23}, from which we find $h=0.299$ -

For the second part, if we assume $s=1^{\circ} 40^{\prime}, n=4$, and find by Table IV. R_{1} vers $s=\frac{2.424}{3}=0.808$, we have by eq. (36)

$$
x=0.808+0.277=1.085
$$

the nearest value to which in Table III. is under $c=$ ${ }^{25}$, giving $D_{s}=2^{\circ} 40^{\prime}$, or for $(n+1), D_{s}=3^{\circ} 20^{\prime}$, which is consistent with $D_{1}=3^{\circ}$. By interpolation we find that our value of x corresponds exactly to $c=24.85$, $n=4$, and therefore the spiral should be laid out on the ground by using this precise chord.

In order to find $d=\mathrm{BS}^{\prime}$ we first find the value of y by interpolation for $c=24.85$, when by eq. (37) we have

$$
d=99.391-(55.554-0.115)=43.952
$$

27. Given : a compound curve joining two tangents, to introduce spirals without disturbing C the point of compound curvature P. Fig. 11.
a. The radius of each arc may be shortened, giving two new arcs compounded at the same point P. Having selected a suitable spiral, we have for the arc AP by analogy from eq. (15), since $h=0$,
Fig. 1 .

$$
\begin{equation*}
R_{2}^{\prime}=\frac{R_{2} \text { ers } \Delta_{2}-x}{\cos s-\cos \Delta_{2}} \tag{38.}
\end{equation*}
$$

and, similarly, after selecting another spiral for the arc PB,

$$
\begin{equation*}
R_{1}^{\prime}=\frac{R_{1} \text { vers } \Delta_{1}-x}{\cos s-\cos \Delta_{1}} \tag{39.}
\end{equation*}
$$

From eq. (ri) we have for the distance AS,

$$
d=y-\left[\left(R_{2}^{\prime}-R_{2}^{\prime}\right)^{\prime} \sin \Delta_{2}+R_{2}^{\prime} \sin s\right], \text {. (40.) }
$$

and for the distance BS',

$$
d^{\prime}=y-\left[\left(R_{1}-R_{1}^{\prime}\right) \sin \Delta_{1}+R_{1}^{\prime} \sin s\right] \cdot(4 \mathrm{r} .)
$$

The values of D_{1}^{\prime} and D_{2}^{\prime} resuiting from eq. (39) and (40) must be adhered to, even though involving a fraction of a minute.
b. Either arc may be again compounded at some point Q, leaving the portion PQ undisturbed, as explained in § 24 . Fig. 12.

Let $\theta=$ the an-

Fig. 12.
gre $\mathrm{AO}_{2} \mathrm{Q}$, and we have from eq. (26), after selecting a suitable spiral and assuming $R_{2}{ }^{\prime}$,

$$
\begin{equation*}
\text { verso } 0=\frac{x-R_{2}^{\prime} \text { vers } s}{R_{2}-R_{2}^{\prime}} \tag{42.}
\end{equation*}
$$

For the distance AS, we have from eq. (27)

$$
d=y-\left[\left(R_{2}-R_{2}{ }^{\prime}\right) \sin 0+R_{2}{ }^{\prime} \sin s\right]
$$

Similar formulæ will determine the angle $\theta=\mathrm{BO}_{1} \mathrm{Q}^{\prime}$ and the distance BS^{\prime} for the other arc PB in terms of a suitable spiral : thus,

$$
\begin{aligned}
& \text { vers } 0=\frac{x-R_{1}^{\prime} \text { vers } s}{R_{1}-R_{1}^{\prime}} \\
& d=y-\left[\left(R_{1}-R_{1}^{\prime}\right) \sin \theta+R_{1}^{\prime} \sin s\right] . \quad \text { (45.) }
\end{aligned}
$$

The method a may be adopted with one arc and the method b with the other if desired, since the point P is not disturbed in either case. The former is better adapted to short arcs, the latter to long ones.

These methods apply also to compound curves of more than two arcs, only the extreme arcs being altered in such cases.

CHAPTER V.

FIELD WORK.

28. Having prepared the necessary data by any of the preceding formulæ, the engineer locates the point S on the ground by measuring along the tangent from V or from A. He then places the transit at S, makes the verniers read zero, and fixes the cross-hair upon the tangent. He then instructs the chainmen as to the proper chord c to use in locating the spiral, and as they measure this length in successive chords, he makes in succession the deflections given in Table II. under the heading "Inst. at S," lining in a pin or stake at the end of each chord in the same manner as for a circle.

When the point Lois reached by (n) chords, the transit is brought forward and placed at L; the verniers are made to read the first deflection given in Table II. under the heading "Inst. at n " (whatever number n may be), and a backsight is taken on the point S. If the verniers are made to read the succeeding deflections, the cross-hair should fall successively on the pins already set, this being merely a check on the work done, until when the verniers read zero, the cross-hair will define the tangent to the curve at L. From this tangent the circular arc which succeeds may be located in the usual manner.

In case it became necessary to bring forward the transit before the point L is reached, select for a transitpoint the extremity of any chord, as point 4 , for
example, and setting up the transit at this point, make the verniers read the first deflection under "Inst. at 4," Table II., and take a backsight on the point S. Then, when the reading is zero, the cross-hair will define the tangent to the curve at the point 4 , and by making the deflections which follow in the table opposite $5,6, \& c$., those points will be located on the ground until the desired point L is reached by n chords from the beginning S .

The transit is then placed at L , and the verniers set at the deflection found under the heading "Inst. at n " (whatever number n may be), and opposite (4) the point just quitted. A backsight is then taken on point 4, and the tangent to the curve at L found by bringing the zeros together, when the circular arc may be proceeded with as usual.
29. To locate a spiral from the point L running toward the tangent at S : we have first to consider the number of chords (n) of which the spiral SL is composed. Then, placing the transit at L, reading zero upon the tangent to the curve at L, look in Table II. under the heading "Inst. at n," and make the deflection given just above $0^{\circ} 00^{\prime}$ to define the first point on the spiral from L toward S; the next deflection, reading up the page, will give the next point, and so on till the point S is reached.

The transit is then placed at S; the reading is taken from under the heading "Inst. at S," and on the line n for a backsight on L. Then the reading zero will give the tangent to the spiral at the point S , which should coincide with the given tangent.

If S is not visible from L, the transit may be set up at any intermediate chord-point, as point 5 , for example. The reading for backsight on L is now found under the
heading " Inst. at 5 ," and on the line n corresponding to L ; while the readings for points between 5 and S are found above the line 5 of the same table. The transit being placed at S, the reading for backsight on 5 , the point just quitted, is found under "Inst. at S " and opposite 5 , when by bringing the zeros together a tangent to the spirak at S will be defined.
30. Since the spiral is located exclusively by its chord-points, if it be desired to establish the regular noofoot stations as they occur upon the spiral, these must be treated as plusses to the chord-points, and a deflection angle will be interpolated where a station occurs. To find the deflection angle for a station succeeding any chordpoint: the differences given in Table II. are the deflections over one chord-length, or from one point to the next. For any intermediate station the deflection will be assumed proportional to the sub-chord, or distance of the station from the point. We therefore multiply the tabular difference by the sub-chord, and divide by the given chord-length, for the deflection from that point to the station. This applied to the deflection for the point will give the total deflection for the station.

This method of interpolation really fixes the station on a circle passing through the two adjacent chordpoints and the place of the transit, but the consequent error is too small to be noticeable in setting an ordinary stake. Transit centres will be set only at chord-points, as already explained.

3I. It is important that the spiral should join the main tangent perfectly, in order that the full theoretic advantage of the spiral may be realized. In view of this fact, and on account of the slight inaccuracies inseparable from field work as ordinarily performed, it is usually preferable to establish carefully the two points
of spiral S and S^{\prime} on the main tangents, and beginning at each of these in succession, locate the spirals to the points L and L '. The latter points are then connected by means of the proper circular arc or arcs. Any slight inaccuracy will thus be distributed in the body of the curve, and the spirals will be in perfect condition.
32. A spiral may be located without deflection angles, by simply laying off in succession the abscissas y and ordinates x of Table III. corresponding to the given chord-length c. The tangent EL at any point L, Fig. 4, is then found by laying off on the main tangent the distance $\mathrm{YE}=x \cot s$, and joining EL. In using this method the chord-length should be measured along the spiral as a check.
33. In making the final location of a railway line through a smooth country the spirals may be introduced at once by the methods explained in Chapter III. But if the ground is difficult and the curves require close adjustment to the contour of the surface, it will be more convenient to make the study of the location in circular curves, and when these are likely to require no further alterations, the spirals may be introduced at leisure by the methods explained in Chapter IV. The spirals should be located before the work is staked out for construction, so that the road-bed and masonry structures may conform to the centre line of the track.
34. When the line has been first located by circular curves and tangents, a description of these will ordinarily suffice for right of way purposes ; but if greater precision is required the description may include the spirals, as in the following example :
"Thence by a tangent N. $10^{\circ} 15^{\prime} \mathrm{E}, 725$ feet to station $1132+12$; thence curving left by a spiral of 8 chords, 288 feet to station II 35 ; thence by a 4° 12 ${ }^{\prime}$ curve (radius

I 364.5 feet), 666.7 feet to the station $1141+66.7$; thence by a spiral of 8 chords 288 feet to station $1144+54.7$ P.T. Total angle 40° left. Thence by a tangent N. 29° 45^{\prime} W.," \&c.
35. When the track is laid, the outer rail should receive a relative elevation at the point L suitable to the circular curve at the assumed maximum velocity. Usually the track should be level transversly at the point S, but in case of very short spirals, which sometimes cannot be avoided, it is well to begin the elevation of the rail just one chord-length back of S on the tangent.
36. Inasmuch as the perfection of the line depends on adjusting the inclination of the track proportionally to the curvature, and in kceping it so, it is extremely important that the points S and L of each spiral should be secured by permanent monuments in the centre of the track, and by witness-posts at the side of the road. The posts should be painted and lettered so that they may serve as guides to the trackmen in their subsequent efforts to grade and "line up" the track. The post opposite the point S may receive that initial, and the post at L may be so marked and also should receive the figures indicating the degree of curve.
37. The field notes may be kept in the usual manner for curves, introducing the proper initials at the several points as they occur. The chord-points of the spiral may be designated as plusses from the last regular station if preferred, as well as by the numbers $\mathrm{x}, 2,3, \& \mathrm{c}$., from the point S. Observe that the chord numbers always begin at S, even though the spiral be run in the opposite direction.

ELEMENTS OF THE SPIRAL

Point n n	Degree of curve Ds.	Spiral angle	Inclination of chord to axis of Y.	Latitude of each chord. $100 \times \cos \text { Incl. }$	Sum of the latitudes,
0	$0^{\circ} 00^{\prime}$	$0^{\circ} 00$	0° oo'		
1	10,	10	05,	99.99989423	99.99989423
1	20^{\prime}		20^{\prime}	$99.99^{83} 3769$	199.99820192
3	30^{\prime}		45^{\prime}	99.99143275	299.98963467
4	40^{\prime}	$\mathrm{I}^{\circ}+0^{\prime}$	$\mathrm{I}^{\circ} 20^{\prime}$	99.97292412	399.96255879
5	50^{\prime}	$2^{\circ} 30^{\prime}$	$2^{\circ} \mathrm{O} 5^{\prime}$	99.93390007	49989645886
6		3'30'	$3{ }^{\circ}$	99.8629535	599.7594123
7	$\mathrm{I}^{2} \mathrm{IO}^{\prime}$	$4^{\circ} 40^{\prime}$	$4^{\circ} \mathrm{O}^{-1}$	99.7461539	699.5055662
8	$\mathrm{I}^{\circ} 20^{\prime}$		$5^{\circ} 20^{\circ}$	99.5670790	$799.0726+52$
9	$\mathrm{I}^{\circ} 30^{\prime}$	$77^{\circ} 30^{\prime}$	$6^{\circ} 45^{\prime}$	99.3068457	898.3794909
10	$\mathrm{I}^{\circ} 40^{\prime}$	$9^{\circ} 10$	$8^{\circ} 20^{\prime}$	98.944164	997.3236549
11	$\mathrm{I}^{\circ}{ }^{\circ} 5^{\prime}$	$11^{\circ}{ }^{\circ}$	$10^{\circ} 05^{\prime}$	98.455415	1095.779070
12		13°	$12^{\circ}{ }^{\circ}$	97.814760	1193.593830
13	$2^{\circ} 10^{\prime}$	$15^{\circ} 10^{\prime}$	$14^{\circ} 05^{\prime}$	96.994284	1290.588114
14	$2^{\circ} 20^{\prime}$	$17^{\circ} 30^{\prime}$	$16^{\circ} 20^{\prime}$	95.964184	1386.552298
15	$2^{\circ} 30^{\prime}$	20°	$18^{\circ} 45^{\prime}$	94.693014	1481.245312
16	$2^{\circ}{ }^{\circ} 40^{\prime}$	$22^{\circ} 40^{\prime}$	$21^{\circ} 20^{\prime}$	93.147975	1574.393287
17	$2^{\circ}{ }^{\circ} 50^{\prime}$	$25^{\circ} 30^{\prime}$	$24^{\circ} 05^{\prime}$	91.295292	1665.688579
18	$3{ }^{\circ}$	$28^{\circ} 30^{\prime}$	27°	89.100650	1754.789229
19	$3^{\circ} 10^{\prime}$	$31^{\circ}{ }^{\circ} 40^{\prime}$	$30^{\circ} 05^{\prime}$	86.529730	1841.318959
20	$3^{\circ} 20^{\prime}$	35°	$33^{\circ} 20^{\prime}$	83.548780	1924.867739
			Point	$\log \frac{x}{y}=$	Deflection angle,
			n.	$l o g \tan i$.	
			1		
			2	7.5606380	$0^{\circ} \text { 12, } 30.0^{\prime \prime} \mathrm{oo}$
			3	7.8317091	$0^{\circ} 23^{\prime} 20.100$
			4	8.0377730	$0^{\circ} 37^{\prime} 29 . "$ "99
			5	8.2041217	$0^{\circ} 54^{\prime} 59 . "$ ", 97
			6	8.3436473	$1^{\circ} 15^{\prime}, 49 . "$ ", 90
			7	8.4638309	$\mathrm{I}^{\circ} 39^{\prime} 59 . " 75$
			8	$8.569+047$	$2^{\circ} 077^{\prime} 29 . \prime \prime 45$
			9	8.6635555	$2^{\circ} 38^{\prime} 18 .^{\prime \prime} 90$
			10	8.7485340	$3^{\circ} 12^{\prime} 27.195$

OF CHORD-LENGTH, 100.

Departure of each chord.	Sum of the depart- ures,	Logarithm,	Logarithm,	Point
100 \times sin Incl.				

TABLE II.

Deflection Angles, for Locating Spiral Curves in the Field.

Rule for finding a Deflection.,
Read under the heading corresponding to the point at which the instrument stands, and on the line of the number of the point observed.

No. of Point, n.	Deflection from i.	Tangent,	Difference of Deflection.
0	oo'		05^{\prime}
12	05 12	$30^{\prime \prime}$	07 30"
3	23	20	10
4	37	30	10 30
5 6	$\begin{array}{r}\text { 1 } \\ \text { - } \\ 15 \\ \hline\end{array}$	oo	$20 \quad 50$
	I 15	-0	$24 \quad 10$
8	207		$\begin{array}{ll}27 & 29 \\ 30 & 50\end{array}$
9	238		30
10	$3 \quad 12$		$\begin{array}{ll}34 & \text { n9 } \\ 37 & 28\end{array}$
11	349	56	$\begin{array}{ll}37 & 28 \\ 40 & 48\end{array}$
12	430	. 44	40 44 44 06
13	514	50	
14	6 02	15	$\begin{array}{ll} \\ 50 & 42\end{array}$
15	6 7 7 5	57	54
17	$\begin{array}{ll}7 & 46 \\ 8 & 44\end{array}$	57 12	$57 \quad 15$
18	$9 \quad 44$	43	60 31
19	$10 \quad 48$	27	$\begin{array}{ll}63 & 44 \\ 66 & 57\end{array}$
20	II 55	24	

TABLE II.-Deflection Angles.

Inst, at i. $s=0^{\circ} \cdot \mathrm{Io}^{\prime}$.			Inst. At 2. $\quad s=0^{\circ} 3^{0^{\prime}}$.		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No, of Point.	Deflection from aux. tan.	Diff. of Deflection.
o	05	05	O	$17^{\prime} 30^{\prime \prime}$	$7^{\prime} 30^{\prime \prime}$
1	oo	10	1		10
2	10	1230 "	2	00	
3	$2230^{\prime \prime}$	1550	3	15	1730
4	3820.	19 10	4	3230	2050
5	5730		5	- 5320	2410
6	$\mathrm{I}^{9} 2000$	2550	6	181730 1	2730
7	I 4550	2910	7	1 4500	3050
8	$2 \begin{array}{lll}2 & 1500 \\ 2 & 17\end{array}$	32 29	8	$2 \begin{array}{lll}2 & 15 & 50 \\ 2 & 49\end{array}$	3+ 09
-	2 47	3549	O	$\begin{array}{lll}2 & 49 & 59 \\ 3 & 27\end{array}$	3730
0	$\begin{array}{llll}3 & 23 & 18\end{array}$	35 39 9	10	$\begin{array}{lll}3 & 27 & 29 \\ 4 & 08 & 18\end{array}$	4049
11	$\begin{array}{lll}4 & 02 & 27\end{array}$	4228	11	40818	4408
12	$4 \quad 4455$	4547	12	$4 \quad 5226$	4728
13	$5 \quad 3042$	4905	13	$\begin{array}{llll}5 & 39 & 54\end{array}$	5046
14	6 I9 47	49 52 52	14	$6 \quad 3040$	54
15	$7 \quad 12 \mathrm{II}$	52 55 50	15	$7 \quad 2444$	5722 57
16	80751	5540 58	16	$8 \quad 2206$	60 39
17	$9 \quad 0649$	6212	17	$9 \quad 2245$	
18	10 09 or		18	$\begin{array}{lll}10 & 26 & 39\end{array}$	
19	$\begin{array}{llllllllllllllll}11 & 14\end{array}$	6527 6840	19	$\begin{array}{ll}\text { II } & 33\end{array}$	$\begin{aligned} & 6710 \\ & 70 \quad 23 \end{aligned}$
20	$12 \quad 2308$		20	$12 \quad 4412$	
Inst. at 3. $\quad s=1^{\circ} 0^{\prime}$.			Inst. AT 4. $s=1^{\circ}{ }_{4} 0^{\prime}$.		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0	$36^{\prime} 40^{\prime \prime}$		0	$\mathrm{I}^{\circ} 02^{\prime} 30^{\prime \prime}$	
1	2730	9 12 12	1	5140	1410
2	15	1530	2	3730	1730
3	00		3	20	1730
4	20	2230	4	00	
5	- 4230		5	25	
6	$1^{\circ} 0820$	25 29 29 IO	6	5230	2730 3050
7	1 3730		7	I 2320	3+10
8	21000	35 50	8	1 5730	3730
9	$2 \begin{array}{lll}2 & 45 \\ 3 & 50\end{array}$	35 39	O	$\begin{array}{lll}2 & 3500 \\ 3 & 15 & 50\end{array}$	4050
10	$\begin{array}{lll}3 & 2459\end{array}$	42 429	so	$\begin{array}{llll}3 & 15 & 50 \\ 3 & 59\end{array}$	$4+\quad 09$
11	$\begin{array}{llll}4 & 07 & 28\end{array}$	4249 45	11	$\begin{array}{llll}3 & 59 & 59 \\ 4 & 47\end{array}$	44 47 29
12	+5317	4949	12	$\begin{array}{lll}4 & 47 & 28\end{array}$	5048
13	$\begin{array}{llll}5 & 42 & 25\end{array}$	49 52 29	13	$\begin{array}{llll}5 & 38 \\ 6 & 16\end{array}$	5
14	$\begin{array}{llll}6 & 3+52\end{array}$	5227 5545	14	$\begin{array}{llll}6 & 32 & 24\end{array}$	5726
15	$7 \quad 3037$	5545 59	15	$7 \quad 2950$	6044
16	$8 \quad 2940$	62 21	16	$8 \quad 3034$	$64 \quad 02$
17	9. 32 or	65 656	17	$9 \quad 3436$	6719
18	$10 \quad 3737$	6536 6852	18	IO 4155	
19	$11{ }^{1} 4629$	68 72	19	$\begin{array}{llll}11 & 52 & 29\end{array}$	7034 7349
20	$\begin{array}{llll}12 & 58\end{array}$		20	130618	7349

TABLE II.-Deflection Angles.

Inst. At 5. s=2 ${ }^{\circ} 3^{\circ}$.			Inst. at 6. $s=3^{\circ} 3^{\circ}$.		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point	Deflection from aux. tan.	Diff. of Deflection.
I	$\mathrm{I}^{\circ} 35^{\prime} 000^{\prime \prime}$ I 2230	. $12^{\prime} 30^{\prime \prime}$	-	$2^{2^{\circ}} 14^{\prime} 10^{\prime \prime \prime}$	$14^{\prime} 10^{\prime \prime}$
2	I 0640	15.50	2	$\begin{array}{ll}2 & 00 \\ \text { I } \\ 42 & 30\end{array}$	1730
3	4730	19.10	3	I 2140	20.50
4	25	2230	4	- 5730	2410
5	00	25	5	30	2730
6	30	30	6	00	30
7	10230	32.30	7	35	35
8	13820	35.50	8	1 12.30	3730
9	21730	39 42 42	9	I 5320	40.50
10	30000	4230	Io	23730	$4{ }_{4} 10$
11	34550	45	11	32500	4730
12	4 4		12	41549	5049
13	52728		13	50958	5409
14	62315	55 59 08	1.4	$6 \quad 0727$	57 57 60 6
15	72223	59 62 25	15	70815	6406
16	82448	62 65 65	16	8 12 215	6406 6725
17	93031	6543 69	17	${ }_{9}^{9} \quad 1946$	6725 7042
18	10 3932	69 72 76	18	103028	7042 $73 \quad 59$
19	If 5148	7216 7532	19	$\begin{array}{llll}\text { II } & 44 & 27\end{array}$	$\begin{array}{ll}73 & 59 \\ 77 & 14\end{array}$
20	$13 \quad 0720$	7532	20	13 Or 4^{1}	7714

Inst. at 7. $s=4^{\circ} 4^{\prime}$.

No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0	$3^{\circ} 00^{\prime} 00^{\prime \prime}$	
1	2.4410	1550 19 10
2	22500	2230
3	20230	2550
4	I 3640	
5	I 0730	3230
6	35	35
7	00	40
8	1 2230	4230
-	$\begin{array}{ll}1 & 22 \\ 2 & 08 \\ 20\end{array}$	4550
10	20820	49 IO
11	25730	5230
12	35000	
13	44549	5909
14	54458	6228
15	64726	6548
16	75314	6905
17	90219	7224
18	I\% 1443	7541
19	113024	7857
20	124921	

Inst. at 8. $s=6^{\circ} \mathrm{co}^{\prime}$.

No. of Point.	Deflection from aux. tan.	Diff. of Deflection
I	$3^{\circ} 52^{\prime} 31^{\prime \prime}$	$17^{\prime} 3 \mathrm{I}^{\prime \prime}$
I	3 35 00	20) 50
2		2410
3	$\begin{array}{lll}2 & 50 \\ 2 & 22 & 30\end{array}$	2730
4	22230	3050
5 6	$\begin{array}{llll}1 & 1 \\ \text { I } & 17 & 40 \\ & \end{array}$	$3+$ Io
6	11730	3730
8	oo	
9	45	
10	I 3230	4730
11	22320	5050
12	31730	$5+10$
13	41500	6049
14	$\begin{array}{llll}5 & 15 & 49\end{array}$	$\begin{array}{r}6 \\ 6+9 \\ \hline\end{array}$
15	$\begin{array}{llll}6 & 19 & 58\end{array}$	$64 \quad 29$ $67 \quad 28$
16	72726 8 8	7047
17	8 38 13	74 05
18	9 5218	7722
19	110940	8040
20	123020	

TABLE II.-Deflection Angles.

No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0	$4^{\circ} 5 \mathrm{I}^{\prime} 4 \mathrm{I}^{\prime \prime}$		0	$5^{\circ} 57^{\prime} 32^{\prime \prime}$	
1	43231	1910 2230	1	$\begin{array}{lll}5 & 36 & 42\end{array}$	2050 $2+11$
2	4 Io OI	2231	2	$\begin{array}{llll}5 & 12 & 31\end{array}$	2411 2730
3	$3 \begin{array}{lll}3 & 44 \\ 10\end{array}$	29 10	3	445 OI	3051
4	3 I5 00	3230	4	4 ry Io	34 10
5	24230	3550	5	34000	34 37
6	20640	39 10	6	30230	4050
7	I 2730	4230	7	$\begin{array}{llll}2 & 21 & 40 \\ \text { I } & 37 & 30\end{array}$	4410
8	45	45	8	I 3730	4730
9	00	50	9	50	50
10	50	5230	10	CO	
II	14230	5230	II	55	
12	23820	55 50	12	I 5230	5720
13	$\begin{array}{llll}3 & 37 & 30\end{array}$	59 62 10	13	- 25320	6050
14	44000	6549	14	35730	6730
15	54549		15	50500	0730
16	65457		16	$6 \quad 1549$	7049
17	80725	722	17	$7 \quad 2957$	7408
18	923 II	754	18	84724	7727
19	IO 4216	7905	19	jo 08 Io	8046
20	120438		20		8404

TABLE II.-Deflection Angles.

No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection.
0	$9^{\circ} 55^{\prime} 10^{\prime \prime}$	$25^{\prime} 52^{\prime \prime}$	0	$1 I^{\circ} 27^{\prime} 45^{\prime \prime}$	"
I	92918	25 29 29	I	II 00 I3	27 30
2	980006	3231	2	10 2920	30 34 12
3	882735	32 35 51	3	95508	3412
4	$\begin{array}{llll}7 & 51 & 44 \\ 7 & 12 & 32\end{array}$	$\begin{array}{ll}35 & 51 \\ 39 & 12\end{array}$	4	$\begin{array}{llll}9 & 17 & 36 \\ 8 & 36\end{array}$	$\begin{array}{ll} 37 & 32 \\ 40 & 51 \end{array}$
5	$\begin{array}{lll}7 & 12 & 32 \\ 6 & 30 & 02\end{array}$	39 42	5	$\begin{array}{llll}8 & 36 \\ 7 & 56\end{array}$	4412
6	$\begin{array}{llll}6 & 30 & 02 \\ 5 & 41 & 11\end{array}$	4551	6	$\begin{array}{llll}7 & 52 & 33\end{array}$	4731
7	$\begin{array}{lll}5 & 44 & 11 \\ 4 & 55 & 00\end{array}$	49 11	7	$\begin{array}{lll}7 & 05 & 02 \\ 6 & 14 & 11\end{array}$	5051
8	$\begin{array}{lll}4 & 55 & 00 \\ 4 & 02 & 30\end{array}$	5230	8	6 I4 II	54 II
10	306	5550	10	$\begin{array}{lll}5 & 22 & 30\end{array}$	5730
II	$\begin{array}{llll}2 & 07 & 30\end{array}$	5910	11	321	6050
12	I. 0500	6230	12	$\begin{array}{llll}3 & 21 & 40 \\ 2 & 17 & 30\end{array}$	6410
13	00	65	13	11000	6730
14	I 1000	70	14	00	70
15	23230	7230	15	11500	75
16	$\begin{array}{lll}3 & 38 & 20\end{array}$	7550	16	23230	7730
17	45730	7910	17	$\begin{array}{llll}2 & 32 & 30 \\ 3 & 53 & 20\end{array}$	8050
18	6 I9 59	8229	18	$\begin{array}{llll}5 & 17 & 30\end{array}$	8410
19	74548	8549	19	5 6 4459	8729
20	9 I4 56	89	20	$8 \quad 1548$	9049

No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection from aux. tan.	Diff. of Deflection
0	$13^{\circ} 07^{\prime} 03^{\prime \prime}$		0	$14^{\circ} 53^{\prime} 03^{\prime \prime}$	
1	123749	$\begin{array}{ll}29 & 14 \\ 32 & 33\end{array}$	I	142209	30 34 34 15
2	120516	32 35 5	2	134754	3415
3	$\begin{array}{llll}11 & 29 & 23\end{array}$	35 39 13	3	131020	3734
4	105010	13	4	122926	4054
5	100737		5	$\begin{array}{ll}\text { II } & 45 \\ 12\end{array}$	
6	92145	4552	6	IO 5739	4733
7	$8 \quad 3234$	49 II	7	IO 0646	5053
8	74002	5232	8	$9 \quad 1234$	5412
9	644 II	5551	9	81503	
10	545 Or		10	6 I4 II	
II	44230		II	6 10 Or	
12	$\begin{array}{llll}3 & 36\end{array}$		12	50230	
13	23730		13	3 51 40	
14	I 1500	75	14	23730	
15	00	80	15	I 2000	$\begin{aligned} & 77 \\ & 80 \end{aligned}$
10	12000	82	16	00	8
17	24230	8550	17	I 2500	8730
18	4 OS 20	85 89 10	18	25230	9050
19	$\begin{array}{llll}5 & 37 & 30\end{array}$	89 92	19	42320	9410
20	70959	9229	20	$\begin{array}{ll}5 & 57 \\ \end{array}$	9410

TABLE II.-Deflection Angles.

Inst. AT I7. $s=25^{\circ} 3^{\prime}{ }^{\prime}$			Inst. AT 18. $s=28^{\circ} 3^{\circ}$.		
No. of Point.	Deflection from aux. tan.	Diff. of Deflection.	No. of Point.	Deflection trom aux. tan.	Diff. of Deflection.
o	$16^{\prime} 45^{\prime} 48^{\prime}$	$32^{\prime} 37^{\prime \prime}$	o	$18^{\circ} 45^{\prime} 17^{\prime \prime}$	$34^{\prime} 18^{\prime \prime}$
1	161311	3656	1	181059	$37{ }^{3} 18$
2	15 37 15	39 16	2	173321	4058
3	145759	4235	3	165223	+ $4+18$
4	$\begin{array}{llll}14 & 15 & 24 \\ 13 & 29 & 20\end{array}$	+ 455	5	$\begin{array}{llll}16 & 08 & 05 \\ 15 & 20 & 28\end{array}$	47
5 6	$\begin{array}{llll}13 & 29 & 29 \\ 12 & 40 & 14\end{array}$	49 45	5	$\begin{array}{llll}15 & 20 & 28 \\ 14 & 29 & 32\end{array}$	5056
6	$\begin{array}{llll}12 & 40 & 14 \\ \text { I1 } & 47 & 41\end{array}$	5233		$\begin{array}{llll}14 & 29 & 32 \\ 13 & 35 & 17\end{array}$	5415
8	10 51	5554 59 12	8	123742	5735 6053
9	95235		9	II 3649	
10	85003	6232 6551	10	10 3236	
II	74412	6511 69	11	${ }^{9} 2503$	6733 7051
12	635 or	6911 72	12	-814 12	7051 74 74
13	52230	7550	13	7 oo or	77 31
14	40540	$7{ }^{75} 510$	14	54230	77 80 80
15	24730	79 82 10	15	42140	8410
16	I 2500	${ }_{85}{ }^{2} 30$	16	2 5730	$\begin{aligned} & 8410 \\ & 8730 . \end{aligned}$
17	I. $\begin{aligned} & \text { O0 } \\ & \\ & 30\end{aligned}$	90	17	I 3000 00	90
18	1 30 3 02 	9230	18	13500	
20	4 +3820	9550	20	$\begin{array}{lll}3 & 12 & 30\end{array}$	9730

Inst. At 19, $s=31^{1^{\circ}} 4^{\prime}$.

No. of Point.	Deflection from aux. tan.	Diff. of Deflection
0	$20^{\circ} 5 \mathrm{I}^{\prime} 33^{\prime \prime}$	
1	201532	$3{ }^{3} \mathrm{or}$
2	193511	3921 4240
3	185331	$4{ }^{42} 40$
4	180731	49
5	$17 \quad 18$ 12	4919 5239
6	162533	5239 55 55
7	$15 \quad 2936$	55 59 59
8	14	6236
9	13 27 14	6554
10	122150	65 69 14
11	$\begin{array}{ll}11 & 12 \\ 36\end{array}$	75 32
12	Io 0004	75 75 52
13	84412	7515
1	725 OI	8231
15	6 02 30	85.50
16	$43^{66} 40$	89
17	30730	9230
18	I 35	
19	00	95 100
20	I 40	

Inst. at 20. $s=35^{\circ} 0^{\prime}$.

No. of Point.	Deflection from aux. tan.	Diff. of Deflection
0	$23^{\circ} 04^{\prime} 36^{\prime \prime}$	
1	222652	37 4 41 1
2	214548	
3	21 OI 25	4423 47 47
4	$20 \quad 1342$	47 51 51 18
5	192240	5421
6	$\begin{array}{llll}18 & 28 & 19\end{array}$	5740
7	$\begin{array}{llll}17 & 30 & 39\end{array}$	6059
8	$\begin{array}{llll}16 & 29 \\ 15 & 25\end{array}$	$6+17$
9	$15 \quad 2523$	6737
10	141746	7055
11	130651	74. 34
12	$\begin{array}{ll}11 & 5237\end{array}$	7733
13	103504	8552
14	91412	8411
15	750 or	8731
16	62230	9050
17	4 51 40	90 94 98 10
18	31730	9730
19	140	100
20	00	

TABLE III.

Degree of Curve and Values of the Coordinates x and y', for each Chord-Point of the Spiral for Various Lengths of the Chord.

n.	$n c$.	c. CHORD-LENGTH = \mathbf{r}.				
		Ds.		y.	x.	$\log x$
1	10		$40^{\prime} 00^{\prime \prime}$	10.000	0.0145	8.162696
2	20		2002	20.000	. 0727	8.861664
3	30		00 o6	29.999	. 2036	9.308815
4	40		$40 \quad 13$	39.996	- +363	9.639792
5	50		2026	49.990	. 7998	9.903002
6	60		OO 45	59.976	1. 323	0.121624
7	70		4112	69.951	2.035	0.308622
8	80		2148	79.907	2.965	0.471991
9	90		0234	89.835	4. 140	0.617015
10	100		43 31	99.732	5.589	0.747370
11	110		2442	109578	7.340	0.805712
12	120		0607	119.359	9.419	0.974022
13	130		4748	129.059	11.853	1.073818
14	140		2946	138.655	14.665	1.166281
15	150		1202	148.125	17.879	1. 252352
16	160		5439	157.439	21.517	1. 332788
17	170		3738	166.569	25.598	1.408205
18	180		21 or	175.479	30.138	I. 479112
19	190		0448	184.132	35.150	1.545931
20	200	33 35	49 3 3	192.487	40.645	1.609013

TABLE III.

	c. $\mathrm{CHORD}-\mathrm{LENGTH}=\mathrm{II}$.				
			y.	x.	g x.
2	11	$\begin{array}{llll}10 & 30^{\prime} & 55^{\prime \prime} \\ 3 & \text { OI } & 50\end{array}$	11.000	0.0160	8.204089
3	22	3 OI 50	22.000	. 0800	8.903057
4	33	4 32 6 03 48	32.999	. 2240	9.350208
5	+4		43.996	. 4799	9681185
6	55	73452	54.989	. 8798	9.944394
7	77	10 10 18 16	65.974	1.456	0.163017
8	88	$\begin{array}{llll}12 & 08 & 37\end{array}$	87.898	3.261	0.350015 0.513384
9	99	134006	98.822	4.554	0.658408
10	110	15 II 44	109.706	6.148	0.788763
11	121	$16 \quad 43$ 31	120.536	8.074	0.907104
12	132	$18 \quad 15.29$	131.295	10.361	1.015415
13	143	$19 \quad 47 \quad 39$	141.965	13.038	I.115210
14	154	2120 Or	152.52 I	16.131	1.207674
15	165	$22 \quad 5238$	162.937	19.667	1.293745
16	176	$24 \quad 25 \quad 29$	173.183	23.669	1.374180
17	187	$\begin{array}{llll}25 & 5^{8} & 36\end{array}$	183.226	28.158	1. 449598
18	198	2732 or	193.027	33.152	1.520505
19	209	290545	202.545	38.665	1.587323
20	220	$\begin{array}{llll}30 & 39 & 48 \\ 32 & 14 & 11\end{array}$	211.735	44.710	1.650405

c. $\mathrm{CHORD}-\mathrm{LENGTH}=\mathbf{2}$.

n.	$n i$.	D_{s}.	J'.	x.	$\log x$
I	12	$\mathrm{I}^{\circ} 23^{\prime} 20^{\prime \prime}$	12.000	0.0175	8.241877
2	24	24641	24.000	. 0873	8.940845
3	36	4 IO O3	35.999	. 2443	9.387997
4	48	$\begin{array}{llll}5 & 33 & 28\end{array}$	47.996	. 5236	9.718974
5	60	6 5 5655	59.988	. 9598	9.982183
6	72	$8 \quad 2026$	71.971	I. 588	0.200806
7	84	944 OI	83.941	2.442	0.387803
8	96	$\begin{array}{llll}\text { II } & 07 & 42\end{array}$	95.889	3.558	0.551172
9	108	$\begin{array}{llll}12 & 31 & 28\end{array}$	107.806	4.968	0.696196
10	120	1355	119.679	6.707	0.826551
11	I 32	$\begin{array}{lll}15 & 19 & 22\end{array}$	131.493	8.808	0.944893
12	I 44	I6 $43 \quad 31$	143.23 I	11.303	1.053204
I 3	I 56	$18 \quad 0748$	154.871	14.223	I. 152999
14	168	I9 $32 \quad 15$	166.386	17.598	1. 245462
15	180	205653	177.749	21.455	I. 331533
16	192	$22 \quad 2143$	188.927	25.821	1.411969
17	204	$\begin{array}{llll}23 & 46 & 44\end{array}$	199.883	30.718	1. 487386
18	216	25 II 59	210.575	36.165	1. 558293
19	228	26	220.95^{8}	42.181	1.625II3
20	240	$\begin{array}{lll} 28 & 03 & 12 \\ 29 & 29 & 12 \end{array}$	230.984	48.774	I.688194

TABLE III.

c. CHORD-LENGTH $=13$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$
1.	13	$\mathrm{I}^{\circ} 16^{\prime} 55^{\prime \prime}$	13.000	0.0189	8.276639
2	26	23352	26.000	. 0945	8.975607
3	39	35049	38.999	. 2647	9422759
4	52	50748	51.995	. 5672	9.753736
5	65	$\begin{array}{llll}6 & 24 & 49\end{array}$	64.987	1.040	0.016945
6	78	74153	77.969	1. 720	0.235568
7	9 I	8 5900	90.936	2.646	0.422565
8	104	$10 \quad 1612$	103.879	3.854	0.585934
9	117	$\begin{array}{llll}11 & 33 & 28\end{array}$	116.789	$5 \cdot 382$	0.730059
10	130	125049	129.652	7.266	0.861313
11	143	140816	142.451	9.542	0.97c655
12	156	$15 \quad 25 \quad 50$	155.167	12.245	1.087966
13	169	$16 \quad 43 \quad 30$	167.776	15.4 C 9	1.187761
14	182	13 Or 18	180.252	19.064	1.280224
15	195	101914	192.562	23.243	1. 366295
16	208	$20 \quad 3720$	204.671	27.972	1.446731
17	221	$21 \quad 55 \quad 34$	216.540	33.277	1.522148
18	234	231400	228.123	39.179	1. 593055
19	247	$24 \quad 3235$	239.371	45.C96	1. 659874
20	260	$\begin{array}{lll} 25 & 51 & 23 \\ 27 & \text { 10 } & 23 \end{array}$	250.233	52.839	I. 722956.

c. $\mathrm{CHORD}-\mathrm{LENGTH}=14$.

n.	$n c$.	D_{s}	y^{\prime}.	x.	$\log x$
I	14	I° 11 $26^{\prime \prime}$	14.000	0.0204	8.308824
2	28	$2 \begin{array}{lll}22 & 52\end{array}$	28.c00	. 1018	9.007792
3	42	$\begin{array}{llll}3 & 34 & 19\end{array}$	41.999	. 2851	9.454943
4	56	44548	55.995	. 6108	9.785920
5	70	5 57 18	69.986	1. 120	0.049130
6	84	$7 \quad 1851$	83.966	I. 852	0.267752
7	98	$8 \quad 2026$	97.931	2.849	0.454750
8	112	$9 \quad 32 \quad 04$	111.870	4.15 I	0.618119
9	126	Io $43 \quad 47$	125.773	5.796	0.763143
10	140	115533	139.625	7.825	0.89349^{8}
II	154	130704	153.409	10.276	1.011840
12	168	$14 \begin{array}{lll}19 & 19\end{array}$	167.103	13.187	I. 120150
13	152	15 31 22	180.682	16.59 .4	1.21994 ${ }^{6}$
14	196	1643129	194.117	20.531	1.312409
15	210	$\begin{array}{llll}17 & 55 & 44\end{array}$	207.374	25.031	1. 398480
16	224	$19 \mathrm{C6} 05$	220.415	30.124	1.478915
17	235	$20 \quad 20 \quad 34$	233.196	35.837	I. 554333
18	252	$21 \quad 3311$.245.670	42.193	I. 625240
19	266	$2245 \quad 56$	257.785	49.211	I. 692059
20	280	$23 \quad 58 \quad 51$	269.481	56.903	1.755141
		$25 \text { II } 55$			

TABLE III.
c. CHORD -LENGTH $=15$.

n.	$n \mathrm{c}$.	D_{s}.	\because.	x.	$\log x$.
1	15	$1^{\circ} 06^{\prime} 40^{\prime \prime}$	15.000	0.0218	8.338787
2	30	21320	30.000	.1091	9.037755
3	45	$3 \quad 2002$	44.998	. 3054	9.484907
4	60	$\begin{array}{llll}4 & 26 & 44\end{array}$	59.994	. 6545	9.815884
5	75	${ }_{5}^{5} 3328$	74.984	I. 200	0.079093
6	90	$6 \quad 4013$	8 c .964	1.985	0.297716
7	105	747 or	104.926	3.053	- 484713
8	120	85351	119.861	4.447	0.648082
9	135	100045	134.757	6.216	0. 793107
10	150	II 0741	149.599	8.384	- 923461
11	165	12 If 41	164.367	11.010	1. 041803
12	180		179.039	14.129	I. 150114
13	195	$14 \quad 2856$	193.588	17.779	1. 249999
14	210	$\begin{array}{llll}15 & 36\end{array}$	207.983	21.997	1. 342372
15	225	$16 \quad 43 \quad 28$	222.187	26.819	1. $428+43$
16	240	$17 \quad 5054$	236. 159	32.276	I. 508879
17	255	$18 \quad 58 \quad 25$	249.853	38.397	I. 584296
18	270	$20 \quad 06 \quad 02$	263218	45.207	1. 655203
19	285	$\begin{array}{llll}21 & 13 & 47\end{array}$	276. 198	52.726	1. 722022
20	300	$\begin{array}{lll}22 & 21 & 39 \\ 23 & 29 & 48\end{array}$	288.730	60.068	1.785104

c. CHORD-LENGTH $=16$.

n.	$n c$	D_{s},	y.	x.	$\log x$
1	16	$\mathrm{I}^{\circ} \mathrm{O} 2^{\prime} 30^{\prime \prime}$	16000	0.0233	8.366816
2	32	20500	32.000	. 1164	9.065784
3	48	30731	47.998	. 3258	9.512935
4	64	4 10 03	63.994	. 6981	9.843912
5	80	$\begin{array}{llll}5 & 12 & 36\end{array}$	79.983	1.250	0.107122
6	96	6 15 11	95.961	2.117	0. 325744
7	112	71747	III. 921	3.256	0.512742
8	128	82026	127.852	4.744	0.676111
	144	92307	143.741	6.624	- 821135
Io	160	10 25 51	159.572	8.943	0.951490
11	176	$\begin{array}{lll}11 & 28 & 37\end{array}$	175.325	11.744	I. 069832
12	192	$12 \begin{array}{lll}12 & 31 & 28\end{array}$	190.975	15.071	1.178142
13	208	$13 \begin{array}{ll}13+21\end{array}$	206.494	18.064	1. 277938
14	224	I4 3720	22I. 848	23.464	1.370401
15	24.	154021	236.999	28.607	1.456472
16	256	$16 \quad 4328$	251.903	34.428	1. 536907
17	272	$17 \quad 4640$	266.510	40.957	1. 612325
18	238	$18 \quad 4957$	280.766	48.221	T. 683232
19	304	195320	294.611	56.241	t. 750051
20	320	$\begin{array}{lll} 20 & 56 & 49 \\ 22 & 00 & 23 \end{array}$	307.979	65.032	I. 813133

TABLE III.

n.	nc.	D_{s}.	3'.	x.	Log x.
1	17	$0^{\circ} 58^{\prime} 49^{\prime \prime}$	17.000	0.0247	8.393145
2	34	I 5738	34.000	. 1236	9.092113
3	51	25627	50.998	. 3461	9.539264
4	68	35519	67.994	. 7417	9.870241
5	85	$4 \quad 5412$	84.982	1. 360	0.133451
6	102	55306	101. 959	2.249	0.352073
7	119	65200	J18.916	3.460	0.539071
8	136	75057	135.842	5.040	0.702440
9	153	84955	152.725	7.038	0.847464
10	170	94856	169.545	9.502	0.977819
II	187	10 4800	186.282	12. 7 8	1.096161
12	204		202.911	16.013	I. 204471
13	221	124615	219.400	20.150	I. 304267
14	238	$1345 \quad 27$	235.714	24.930	I. 396730
15	255	14 4444	251.812	30.395	1.482801
16	272	$15 \quad 4403$	267.647	36.579	1. 563236
17	289	$16 \quad 43 \quad 27$	283.167	43.516	1.638654
18	306	$17 \quad 4256$	298.314	51.234	1.709561
19	323	$\begin{array}{llll}18 & 42 & 29\end{array}$	313.024	59.756	
20	340	$\begin{array}{lll} 19 & 42 & 07 \\ 20 & 41 & 49 \end{array}$	327.223	69.097	1. 839462
c. $\mathrm{CHORD}-\mathrm{LENGTII}=18$.					
n.	$n c$.	D_{s}.	y.	x.	$\log x$.
I	18	$0^{\circ} 55^{\prime} 33^{\prime \prime}$	18.000	0.0262	8.417968
2	36	15107	36.000	. 1309	9.116937
3	54	24640	53.998	.3665	9.564088
4	72	34216	71.993	. 7853	9.895065
5	90	43751	89.981	I. 440	0.158274
6	108	53328	107.957	2.382	0.376897
7	126	6 29 05	125.911	3.663	0.563894
8	144	72445	143.833	5.337	0.727263
9	162	82026	161. 708	7.452	0.872288
10	180	$9{ }^{9} 1608$	179.518	10.061	1.002643
II	198	IO II 54	197.240	13.212	I. 120984
12	216	$\begin{array}{lll}11 & 07\end{array}$	214.847	16.955	1. 229295
13	234	1203121	232.366	21.335	I. 329090
14	252	125924	249.579	26.397	1.421554
15	270	135520	266.624	32.183	1. 507624
16	288	$1+5118$	283.391	38.731	1.588060
17	306	$\begin{array}{llll}15 & 47 & 20\end{array}$	299.824	46.076	I. 663477
18	324	$16 \quad 43 \quad 27$	315.862	54.248	I. 734385
19	342	$\begin{array}{lll}17 & 39 & 37\end{array}$	331.437	63.271	I. 801203
20	360	$\begin{array}{llll}18 & 35 & 51 \\ 19 & 32 & 08\end{array}$	346.476	73.161	1.864285

TABLE III.

n.	$n \mathrm{c}$.	D_{s}.	y.	x.	$\log x$.
1	19	$0^{\circ} 52^{\prime} 38^{\prime \prime}$	19.000	0.0276	8.441450
2	38	I 45 I 6	38.000	. 1382	9.140418
3	57	23754	56.998	.3869	9.587569
4	76	$3 \quad 3034$	75.993	. 829°	9.918546
5	95	42313	$9+980$	1.520	0.181755
6	114	$\begin{array}{llll}5 & 15 & 54\end{array}$	113.954	2.514	0.400378
7	133	$6 \begin{array}{lll}6 & 08 \\ 36\end{array}$	132.906	3.867	0.587376
8	152	7 or 19	151.824	5.633	0.750744
9	171	$7 \quad 5403$	170.692	7.866	0.895769
10	190	8.4649	189.491	10.620	1.026124
II	209	9 9 39, 36	208.198	13.947	1. 144465
12	228	10 3226	226.783	17.897	1.252776
13	247	$\begin{array}{llll}11 & 25 & 18\end{array}$	245.212	22.520	1. 352571
14	266	$\begin{array}{llll}12 & 18 & 12\end{array}$	263.445	27.863	1. 445035
15	285	13 II 1109	281.437	33.971	1.531105
16	304	140409	299.135	40.883	1.611541.
17	323	1457 I1	316.481	48.636	1. 686958
18	342	155016	333.410	57.262	1. 757866
19	361		349.851	66.786	1. 82.4684
20	380	$\begin{array}{lll} 17 & 36 & 38 \\ 18 & 29 & 54 \end{array}$	365.725	77.226	1. 887766

c. $\mathrm{CHORD}-\mathrm{LENGTH}=\mathbf{2 0}$.

TABLE III.
c. CHORD -LENGTH $=2$ I.

c. $\mathrm{CHORD}-\mathrm{LENGTH}=22$.

TABLE III.

c. $\mathrm{CHORD}-\mathrm{LENGTH}=23$.

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	23	$0^{\circ} 43^{\prime} 29^{\prime \prime}$	23.000	0.0335	8.524424
2	46	1 2658	46.000	. 1673	9.223392
3	69	21026	68.998	. 4683	9.670543
4	92	2. 5356	9 T .991	1. 004	0.001520
5	115	$3 \quad 3726$	114.976	.1. 840	0.264729
6	138	42050	137.945	3.043	0.483352
7	161	50426	160.886	4.681	0.670350
8	184	$5{ }_{5}^{47} 5^{8}$	183.787	6.819	0.833719
9	207	6 31 30	206.627	9.522	0.978743
10	230	$\begin{array}{llll}7 & 15 & 04\end{array}$	229.384	12.856	I. 109098
11	253	$7 \quad 5838$	252.029	16.583	1.227439
12	276	84213	274527	21.665	1.335750
13	299	92549	296.835	27.261	1. 435545
14	322	$10 \quad 0927$	318.007	33.729	1.528009
15	345	10 5306	340.686	4 T .123	1.614080
16	368	$\begin{array}{llll}\text { II } & 36 & 47\end{array}$	362.110	49.490	1.694515
17	391	$\begin{array}{lll} 12 & 20 & 29 \\ 13 & 04 & 13 \end{array}$	383.108	58.875	1.769933

$$
\text { c. } \quad \text { CHQRD-IENGTH }=24
$$

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	24	$41^{\prime} 40^{\prime \prime}$	24.000	0.0349	8.542907
2	48	$\mathrm{I}^{\circ} 2320$	48.000	. 1745	9.241875
3	72	20500	71.998	. 4887	9.689027
4	96	24641	95.991	1.047	0.020004
5	120	328.22	119.975	1.920	0.283213
6	144	4 10 03	143.942	3.176	0.501836
7	168	4 51 45	167.88 r	4.885	0.688833
8	192	53328	191.777	7.115	0.852202
9	216	6 15 10	215.611	9.936	0.997226
10	240	6.5654	239.358	13.415	J. 127581
11.	264	73839	262.987	17.617	1. 245923
12	288	$8 \quad 2025$	286.463	22.607	I. 354234
13	312	$9{ }^{\text {- }} 212$	309.741	28.446	1. 454029
14	336	944 00	332.773	35.196	1. 54649^{2}
15	360	102548	355.499	42.910	1. 632563
16	384	$\begin{array}{llll}11 & 07 & 39\end{array}$	377.854	51.641	I. 712999
17	408	$\begin{array}{llll}11 & 49 & 31 \\ 12 & \end{array}$	399.765	61.435	1.788416

c. CHORD-LENGTH $=\mathbf{2 5}$.

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	25	$0^{\circ} 40^{\prime} 00^{\prime \prime}$	25.000	0.0364	8.560636
2	50	I 20 co	50.000	. 1818	9.259604
3	75	20000	74.997	. 5090	9.706755
4	100	$2{ }^{2} 40$ or	99.991	t.091	0.037732
5	125	32002	124.974	2.000	0.300942
6	150	$4{ }^{4} 0003$	149.940	3.308	0.519564
7	175	44004	174.876.	5.088	0.706562
8	200	52005	199.768	$7 .+12$	0.869931
-	225	6 00 09	224.595	10.350	1.014955
10	250	64013	249.331	13.974	1.145310
11	275	72017	273.945	18.351	1.263652
12	300	8 00 22	298.398	23.548	1. 371962
13	325	84028	322.647	29.632	1. 471758
14	350	$9 \quad 2035$	346.638	36.662	I. 56.422 I
15	375	10 Oo 43	370.311	44.698	1.650292
16	400	$\begin{array}{llll}10 & 40 & 52 \\ \text { II } & 21 & 03\end{array}$	393.598	53.793	1.730727

c. CHORD -LENGTH $=26$.

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	26	$0^{\circ} 38^{\prime} 28^{\prime \prime}$	26.000	0.0378	8.577669
2	52	I 1656	52.000	.1891	9.276637
3	78	I $55 \quad 24$	77.997	. 5294	9.723789
4	104	23352	103.990	1.134	0.054766
5	130	$\begin{array}{llll}3 & 12 & 20\end{array}$	129.973	2.080	0.317975
6	156	35048	155.937	3.440	0. 536598
7	182	42918	181.871	5.292	0.723595
8	208	50748	207.759	7.708	0.886964
9	234	5 5 4618	233.579	10. 764	1.031989
Io	260	6244^{8}	259.304	14.533	I. 162343
11	286	700320	284.903	19.085	I. 280685
12	312	74152	310.334	24.490	I. 388996
13	338	82025	335.553	30.817	1.488791
14	364	85859	360.504	38.129	1.581254
15	390	$\begin{array}{rrr}9 & 37 & 33 \\ 10 & 16 & 09\end{array}$	385.124	46.486	1.667325

TABLE III.
c. CHORD-LENGTH $=27$.

c. CHORD-LENGTH $=28$.

TABLE III.

$$
\text { c. } \text { CHORD-LENGTH }=29 \text {. }
$$

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	29	$0^{\circ} 34^{\prime} 29^{\prime \prime}$	29.000	0.0422	8.625094
2	58	$10^{\circ} 58$	57.999	. 2109	9.324062
3	87	I 4327	86.997	.5905	9.771213
4	116		115.989	1. 265	0.102190
5	145	$2{ }_{2} 5^{2} 26$	144.970	2.320	0. 365400
6	174	32655	173.930	3.837	0.584022
7	203	4 OI 26	202.857	5.902	0.771020
8	232	43556	231.731	$8.59{ }^{\text {S }}$	0. $93+389$
9	261	5 10 26	260.530	12.006	$1.079+13$
10	290	54457	289.224	16.209	1. 209768
11	319	$\begin{array}{llll}6 & 19 & 29\end{array}$	317.776	21.287	1.328110
12	348	$6 \quad 54$ OI	346.142	27.316	1. $436+20$
13	377	$\begin{array}{llll}7 & 25 & 34 \\ 8 & 03\end{array}$	$37+.271$	$3+.373$	1.536216
14	406	$\begin{array}{lll} 1 & 03 & 07 \\ 8 & 37 & 40 \end{array}$	402.100	42.528	1.628679

c. $\mathrm{CHORD}-$ LENGTII $=30$.

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	30	$0^{\circ} 33^{\prime} 20^{\prime \prime}$	30.000	0.0436	8.639817
2	60	${ }^{1} 0640$	59.999	. 2182	9.338785
3	90	I 4000	89.997	.6108	9. 785937
4	120	21320	119.989	1. 309	0.116914
	150	24641	$1+9.969$	2.400	0.380123
6	180	32002	179.928	3.970	0.59874^{6}
7	210	35322	209.852	6.106	0.785743
8	240	42644	239.722	8.894	$0.9+9112$
9	270	50005	269.514	12.420	1.09+137
10	300	$\begin{array}{llll}5 & 33 & 27\end{array}$	299. 197	16.768	I. $22+491$
11	330	6 06 49	328.734	22.021	I. 342833
12	360	$\begin{array}{llllllllllll}6 & 40\end{array}$	358.075	28.258	I. $45114+$
13	3,0	$\begin{array}{llll}7 & 13 & 36 \\ 7 & 4 & 00\end{array}$	387.176	35.558	1. 550939

n.	$n c$.	Es.	y.	x.	$\log x$.
1	31	$0^{\circ} 32^{\prime} 15^{\prime \prime}$	31.000	0.045 I	8.654058
2	62	$1{ }^{1} 0+31$	61.999	. 2254	9.353026
3	93	I 3647	92.997	. 6312	9.800177
4	124	209 C 2	123.988	1.353	0.131154
5	155		154.968	2.479	0. 394363
6	186	313.34	185.925	4. 102	0.612986
7	217	34550	216.847	6.309	0.799984
8	248	$4 \quad 1807$	247.713	9.191	0. 963353
9	279	45024	278.49^{8}	12.834	1. 108377
10	310	52241	309.170	17.327	1. 238732
11	341	$5 \begin{array}{lll}54 & 59\end{array}$	339.692	22.755	1. 357073
12	372	$\begin{array}{llll}6 & 27 & 17\end{array}$	370.014	29.200	I. 465384
13	403	$6 \quad 5935$	400.082	36.743	I. 565179
		$7 \quad 3153$			

$$
\text { CHORD-LENGTH }=32 .
$$

n.	$n c$.	Ds.	y.	x.	$\log x$
1	32	$0^{\circ} 31^{\prime} 15^{\prime \prime}$	32.000	0.0465	8.667846
2.	64	$1{ }^{1} 0230$	63999	. 2327	9.366814
3	96	13345	95.997	. 6516	9.813965
4	128	20500	127.988	1. 396	0.144942
5	160		159.967	2.559	0.408152
6	192	30731	เกฺ1. 923	4.234	0.626774
7	224	$\begin{array}{llll}3 & 38 & 47\end{array}$	223.842	6.513	0.813772
8	256	4 10 O3	255.703	9.487	0.977141
9	288	4419	287.48 I	13.248	1.122165
10	320		319.144	17.886	1. 252520
11	352	54353	350.649	23.489	1.370802
12	384	$6 \quad 1510$	381.950	30.142	1.479172
13	416	$\begin{array}{llll}6 & 46 & 28 \\ 7 & 17 & 46\end{array}$	412.988	37.929	I. 578968

TABLE III.

$$
\text { c. } \text { CHORD-LENGTH }=33 .
$$

| n. | $n c$ | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

c. CHORD -LENGTH $=34$.

n.	$n c$.	D_{s}.	y.	x.	Log. x.
1	34	$0^{\circ} 29^{\prime} 25^{\prime \prime}$	34.000	0.0495	8.694175
2	68	- $5^{8} 49$	67.999	. 2473	9.393143
3	102	12814	101.996	. 6923	$9.84029+$
4	136	I 5739	135.987	1.483	0.171271
5	170	22704	169.965	2.719	0. 43448 I
6	204	$\begin{array}{lllll}2 & 56 & 29\end{array}$	203.918	4.499	0.653103
7	238	$\begin{array}{lll}3 & 25 & 55\end{array}$	237.832	6920	0.840101
8	272	35520	271.685	10.080	1.003470
9	306	3 +24 4	305.449	14.076	1. 148494
10	$3 \nmid 0$	+ $5+12$	339.090	$19.00+$	I. 278849
11	374	$\begin{array}{llll}5 & 23 & 38\end{array}$	372.565	24.957	I.397191
I'2	408	$\begin{array}{llll}5 & 53 & 05 \\ 6 & 22 & \text { I }\end{array}$	405.822	32.026	1.505501

TABLE III.

c. $\mathrm{CHORD}-\mathrm{LENGTH}=39$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$.
1	39	$0^{\circ} 25^{\prime} 38^{\prime \prime}$	39.000	0.0567	8.753761
2	78	- 51 17	77.999	. 2836	9.452729
3	117	I 1655	116.996	. 7941	9.899880
4	156	I 4234	155.985	1.702	0.230857
5	195	20813	194.960	3.119	0.494066
6	234	23351	233.906	5.160	0.712689
7	273	25930	272.807	7.938	0.899687
8	312	$\begin{array}{llll}3 & 25 & 09\end{array}$	311.638	11.563	1.063055
	351	35048	350.368	16.147	I. 208080
10	390	$\begin{array}{lll} 4 & 16 & 28 \\ 4 & 42 & 07 \end{array}$	388.956	21.799	1.338435

c. CHORD -LENGTH $=40$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$.
I	40	$0^{\circ} 25^{\prime} 00^{\prime}$,	40.000	0.0582	8.764756
2	80	- 5000	79.999	. 2909	9.463724
3	120	I 1500	119.996	. 8145	9.910875
4	160	1. 4000	159.985	1.745	0.241852
5	200	20500	199.959	3. 199	0.505062
6	240	230 or	239.904	5.293	0.723684
7	280	255 OI	279.802	8.141	0.910682
8	320	3.20 or	319.629	II. 859	1.07405 1
9	360	$3 \quad 4502$	359.352	16.561	1.219075
10	400	$\begin{array}{lll} 4 & 10 & 03 \\ 4 & 35 & 03 \end{array}$	398.929	22.358	1. 349430

c. $\mathrm{CHORD}-\mathrm{LENGTH}=4 \mathrm{I}$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$.
I	41	$0^{\circ} 24^{\prime} 24^{\prime \prime}$	41.000	0.0596	8.775480
2	82	- $4^{8} 47$	81.999	. 2982	9.474448
3	123	I 1310	122.996	. 8348	9.921599
4	164	I 3734	163985	1.789	0.252576
5	205	2 or 57	204.958	3.2 .9	0.515786
6	246	22621	245.901	5.425	-0. 734408
8	287	25045	286.797	8.345	0.921406
8	328	$\begin{array}{llll}3 & 15 & 9\end{array}$	327.620	12.156	1. 084775
9	369	$3 \quad 3933$	368.336	16.975	т. 229799
10	410	$\begin{array}{llll}4 & 03 & 57 \\ 4 & 28 & 21\end{array}$	408.903	22.917	I. 360154

TABLE III.
c. $\mathrm{CHORD}-\mathrm{LENGTH}=42$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$
1	42	$0^{\circ} 23^{\prime} 49^{\prime \prime}$	42.000	0.0611	8.785945
2	84	- 4737	83.999	. 3054	9.484913
3	126	I II 26	125.996	. 8552	9.932065
4	168	I 35 I4	167.984	1. 832	0. 263042
5	210	I 5902	209.957	3.359	0. 526251
6	252	22252	251.899	5.557	0. $7+4874$
7	294	24641	293.792	8.548	0.931871
8	336	3. 10 30	335.611	12.452	1.095240
9	37^{3}	$\begin{array}{lllllllllllll}3 & 34\end{array}$	377.319	17.389	I. 240265
Io	+20	3 3 4 +	418.876	23.476	1.370619

c. $\mathrm{CHORD}-\mathrm{LENGTH}=43$.

n.	nc.	D_{s}.	y.	x.	$\log x$
1	43	$0^{\circ} 23^{\prime} 15^{\prime \prime}$	43.000	0.0625	8.796164
2	86	- 4631	85.999	. 3127	9.495133
3	129	I 0946	128.996	. 8755	9.942284
4	172	I 3302	171.984	I. 876	0.27326I
5	215	I $56 \quad 17$	214.955	3.439	0.536470
6	258	$2 \begin{array}{lll}2 & 19 & 33\end{array}$	257.897	5.690	0.755093
7	301	$24^{2} 44^{8}$	300.787	8.752	0.942090
8	344	30604	$3+3.601$	12.749	1.105459
9	387	$\begin{array}{ll}3 & 2920\end{array}$	386.303	17.803	1.250484
Io	430	$\begin{array}{lll}3 & 52 & 35 \\ 4 & 15 & 50\end{array}$	428.849	24.035	I. 380839

c. CHORD-LENGTII $=44$.

n.	$n c$.	D_{s}	3.	x.	$\log x$.
1	44	$0^{\circ} 22^{\prime} 44^{\prime \prime}$	44.000	$0.06 \downarrow 0$	8.806149
,	88	- 4527	87.999	. 3200	9.505117
3	132	$1 \mathrm{I}^{\text {OS }} \mathrm{II}$	131.995	. 8959	9.952268
4	176	I 3055	175.984	1.920	0.283245
5	220	I 533^{8}	219.954	3.519	0,546454
6	264	$2 \begin{aligned} & 2 \\ & 16\end{aligned} 22$	263.894	5.822	0.765077
7	308	23906	307.78	8.955	0.952075
8			351.592	13.045	I. 115444
9	396	$\begin{array}{lll}3 & 24 & 34 \\ 3 & 47 & 18\end{array}$	395.287	18.217	1.260468

TABLE III.
c. $\mathrm{CHORD}-\mathrm{LENGTH}=45$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$
1	45	$0^{\circ} 22^{\prime} 13^{\prime \prime}$	45.000	0.0655	8.815908
2	90	- 4427	89.999	. 3272	9.514877
3	135	I 0640	134.995	. 9163	9.962028
4	180	I 2853	179.983	I. 963	0.293005
5	225	15107	224.953	3.599	0.556214
6	270	21320	269.892	5.954	0.774837
7	315	23534	314.77^{8}	9. 159	0.961834
8	360		359.583	13.341	1. 125203
9	405	$\begin{array}{lll} 3 & 20 & 01 \\ 3 & 42 & 15 \end{array}$	404.271	18.631	1.270228

c. $\mathrm{CHORD}-\mathrm{LENGTH}=46$.

n.	$n c$.	D_{s}.	y.	x.	$\log x$
1	46	$0^{\circ} 21^{\prime} 44^{\prime \prime}$	46.000	0.0669	8.825454
2	92	- 43.29	91.999	. $33+5$	9.524422
3	138	I $05^{\circ} 13$	137.995	. 9366	9.971573
4	184	I $26{ }^{1} 8$	${ }^{183.983}$	2.007	0.302550
5	230	I 4842	229.952	3.679	0.565759
6	276	21026	275.889	6.087	0.784382
	322	23211	321.773	9.362	0.971380
8	368	25356	367.573	13.638	1.134749
9	4^{14}	$\begin{array}{lll} 3 & 15 & 40 \\ 3 & 37 & 24 \end{array}$	413.255	19.045	1.279773

c. $\mathrm{CHORD}-\mathrm{LENGTH}=47$.

n.	$n c$.	Ds.	y.	x.	$\log x$
1	47	$0^{\circ} 21^{\prime} 16^{\prime \prime}$	47.000	0.0684	8.834794
2	94	- 4233	93.999	. 3418	9.533762
3	141	I 0350	140.995	. 9570	9.980913
4	188	I 2506	187.982	2.051	0.31189°
5	235	I 4623	$23+.951$	3.759	0. 575100
6	2 S 2	20740	28 r .887	6.219	0. 793722
7	329	22857	-28.768	9.566	0.980720
8	376	$\begin{array}{llll}2 & 50 & 14\end{array}$	375.564	13.934	1. 144089
9	423	$\begin{array}{lll} 3 & 11 & 31 \\ 3 & 32 & 4 \end{array}$	422.238	-9.459	I. 289113

TABLE III.

$$
\text { c. } \mathrm{CHORD}-\text { LENGTH }=48
$$

n.	$n c$.	D_{s}.	y.	x.	$\log x$.
1	48	$0^{\circ} 20^{\prime} 50^{\prime \prime}$	48.000	0.0698	8.843937
2	96	- 4140	95.999	. 3491	9.542905
3	144	I 0230	143.995	. 9774	9.990057
4	192	I 2320	191.982	2.094	0.321034
5	240	I 4410	239.950	3.839	0.584243
6	288	20500	287.885	6.35 I	0. 802866
7	336	22551	335.763	9.769	0.989863
8	384	2 46 3 41	383.555	14.23 I	I. 153232
		30631			
c. $\mathrm{CHORD}-\mathrm{LENGTH}=49$.					
n.	$n c$.	D_{s}.	y.	x.	Log x.
1	49	$0^{\circ} 20^{\prime} 25^{\prime \prime}$	49.000	0.0713	8.852892
2	98	- 4049	97.999	. 3563	9.5518609.099011
3	147	1 Or 14	146.995	. 9977	
	196	I 2138	195.982	2. 138	0.329988
5	$2+5$	I 4203	24.949	3.919	0.593198
6	294	$\begin{array}{llll}2 & 02 & 27\end{array}$	293.882	6.484	0.811820
	$3+3$	$\begin{array}{llll}2 & 22 & 52\end{array}$	342.758	9.973	0.998818
	39^{2}	$\begin{array}{llll}2 & 43 & 17 \\ 3 & 03 & 31\end{array}$	391.546	14.527	I. 162187

c. CHORD-LENGTH $=50$.

n.	nc.	D_{s}.	y.	x.	$\log x$.
1	50	$0^{\circ} 20^{\prime} 00^{\prime \prime}$	50.000	0.0727	8.861666
2	100	- 4000	99.999	. 3636	9.560634
3	150	$1{ }^{1} 0000$	149.995	1.018	0.007785
4	200	I 2000	199.981	2.182	0.338762
5	250	I 4000	249.948	3.999	0.601972
6	300	20000	299.880	6.616	0. 820594
		22000		10.176	1. 007592
8	400	2 3 30000	399.536	14.824	1.170961

TABLE IV.

Functions of the Angle s.

n.	s.	$\cos s$.	log vers s.	$R I^{\circ} \times$ $\text { vers } s \text {. }$	$\sin s$.	$\log \sin s$	s.
I	$0^{\circ} 10$. 99999	4.626422	. 024	. 00291	7.463726	$0^{\circ} 10^{\prime}$
2	- 30	- 99996	5.580662	. 218	. 00873	7.940842	- 30
3	oo	- 99985	6.182714	. 873	. 01745	8.241855	I 00
4	I 40	. 99958	6.626392	2.424	. 02908	8.463665	I 40
5	230	- 99905	6.978536	$5 \cdot 453$. 04362	8.639680	230
6	330	.99813	7.720726	10.687	.06105	8.785675	330
7	440	- 99668	7.520498	18.994	.08136	8.910404	440
8	600	- 99452	7.738630	31 388	. 10453	9.019235	6 00
9	730	- 99144	7.932227	49.018	. 13053	9.115698	$7 \quad 30$
10	910	. 98723	8.10622I	73.173	. 15931	9.202234	9 10
11	II 00	. 98163	8.264176	105.270	. 19081	9.280599	II 00
12	1300	. 97437	8408748	146.857	. 22495	9.352088	13 00
13	15 10	. 96517	8.541968	199.570	. 26163	9.417684	15 10
14	$17 \quad 30$. 95372	8.665422	265.186	- 30071	9.478142	$17 \quad 30$
15	2000	. 93969	8.780370	$345 \cdot 540$	- 34202	9.534052	$20 \quad 00$
I6	2240	. 92276	8.887829	442.543	. 38537	9. 585877	2240
17	$25 \quad 30$. 90259	8.988625	558.153	. 43051	9.633984	$25 \quad 30$
18	28 30	. 87882	9.08344 I	694.335	. 47716	9.678663	$28 \quad 30$
19	3 I 40	. 85112	9.172846	853.050	. 52498	9.720140	3140
20	35 oo	.81915	9.257314	1036.20	. 57358	9.758591	35 00

TABLE

SELECTED SPIRALS FOR A 2° CURVE, GIVING						
\triangle		s.	$n \times c$.	$D_{\text {s }(n+1)}$.	D^{\prime}.	d.
10°		00^{\prime}	3×32	$2^{\circ} 05^{\prime} 00^{\prime \prime}$	$2^{\circ} \mathrm{o} 3^{\prime}$	4 T .12
10		40	4×39	20813	209	6 I .04
10		30	5×43	$2 \begin{array}{llll} & 19 & 33\end{array}$	218	73.69
10		30	6×45	23534	233	78.81
Io		40	7×44	3 OI 50	240	70.47
20	1	00	3×33	2 O1 13	2 Or	45.28
20		40	4 $\times 1$	2 O1 57	$2 \quad 02$	73.85
20		30	5×48	20500	205	99.99
20		30	6×50	22000	206	109.52
30		00	3×34	1 5739	2 Or	46.14
30			4×41	2 O1 57	2 OI	75.16
30		30	5×49	20227	202	109.78
30		30	6×50	22000	202	115.63
30		30	6×50	22000	203	$110.9{ }^{\circ}$
40		00			2 OI	46.90
40		40	4×42	I 5902	2 OI	76.96
40			. 5×50	20000	2 OI	117.87

v.

EQUAL LENGTHS BY CHORD MEASUREMENT.					
$\frac{1}{2}$ old line.	$\frac{1}{2}$ new line.	Diff.	x.	h.	k.
291.12	291.12	. 00	.6516	. 040	. 061
311.04	311.04	. 00	1.702	. 187	. 110
323.69	323.70	$+.01$	3.439	. 354	. 103
328.81	328.82	$+. \mathrm{OI}$	5.954	- 590	. 099
320.47	320.50	$+.03$	8.955	. 897	. 100
545.28	545.28	. 00	. 6719	. 122	.182
573.85	573.84	-. OI	1.789	. 118	. 066
599.99	600.00	$+. \mathrm{OI}$	3.839	. 527	. 137
609.52	609.52	. 00	6.616	- 554	. 084
796.14	796.22	$+.08$. 6923	. 566	. 082
825.16	825.16	. 00	1.789	. 227	. 127
859.78	859.75	$-.03$	3.919	. 377	.096
865.63	865.57	-. 06	6.616	. 249	. 038
860.90	860.98	$+.08$	6.616	1.013	. 153
1046.90	1047.15	$+.25$. 7127	1.222	1.715
1076.96	1077.09	+.13	1. 832	. 8.48	. 463
1117.87	1117.77	$-.10$	3.999	. 141	. 035

SELECTED SPIRALS FOR A 4° CURVE, GIVING

Δ		s.	$n \times c$.	$D_{s(n+1)}$.	D^{\prime}.	d.
10°	I°	00^{\prime}	3×16	$4^{\circ} 10^{\prime} 03^{\prime \prime}$	$4^{\circ} 07^{\prime}$	20.22
10	I	40	4×19	42313	416	29.12
10	2	30	5×22	43248	439	38.75
10	3	30	6×23	$\begin{array}{llll}5 & 04 & 26\end{array}$	517	$4^{1} \cdot 37$
20	1	40	4×20	4 10 03	404	34.92
20	2	30	5×24	4 10 O3	409	50.72
20	3	30	6×27	$4 \quad 19$ I9	$4 \quad 17$	63.69
20	4	40	7×30	$4 \quad 2644$	4 3I	78.07
20	6	Oo	8×31	45024	446	8 L .88
20	7	30	9×32	$\begin{array}{llll}5 & 12 & 36\end{array}$	516	85.40
30	1	40	4×20	4 10 03	402	35.57
30	2	30	5×25	4 00 03	4 ot	57.39
30	3	30	6×28	41003	407	72.37
30	4	40	7×32	4 10 03	414	93.09
30	6	00	8×35	$\begin{array}{llll}4 & 17 & 12\end{array}$	423	110.31
30	7	30	9×37	43020	434	122.20
30	9	10	10×38	44933	447	126.86
40	2	30	5×25	40003	402	58.91
40	3	30	6×28	4 10 03	404	73.75
40	4	40	7×32	4 Io 03	408	94.65
40	6	$\bigcirc 0$	8×36	4 10 03	$4 \quad 12$	$121.3{ }^{3}$
40	7	30	9×39	44 16	417	142.86
40	9	Io	$10 \times 4 \mathrm{I}$	4.2821	426	154.34
60	2	30	5×25	$4 \quad 0003$	4 or	59.68
60	3	30	6×29	4 Or 26	402	81.04
60	4	40	7×32	4 10 03	403	99.59
60	6	oo	8×36	4 10 03	405	125.81
60	7	30	9×40	41003	408	154.42
80	2	30	5×25	40003	4 or	58.29
80	3	30	6×29	4 or 26	4 or	82.82
80	4	40	7×33	40228	402	106.99
So	6	oo	8×37	$\begin{array}{llll}4 & 03 & 17\end{array}$	4	135.61
80	7	30	$9 \times 4 \mathrm{I}$	$4 \quad 0357$	405	164.79

$\frac{1}{2}$ old line.	$\frac{1}{2}$ new line.	Diff.	x.	h.	k.
145.22	145.17	-. 05	. 3258	. $0+5$. 135
154.12	154.13	+. 01	:8290	. 080	. 100
163.75	163.76	+ . 01	1. 760	. 177	. 100
166.37	166.39	$+.02$	3.043	. 305	. 100
28.92	284.92	. 00	. 8726	. 08 I	. 100
300.72	300.72	. 00	1.920	. 184	. 096
313.69	313.75	$+.06$	3.573	. 375	.105-
328.07	328.08	$+.01$	6.106	-598	.093
332.88	331.92	+. 04	9.191	. 910	. 092
335.40	$335 \cdot 47$	+. 07	13.248	1.310	. 099
410.57	410.57	. 00	. 8726	. 137	. 157
432.39	432.38	-. 01	2.000	. 147	. 074
447.37	447.35	-. 02	3.705	. 284	. 077
468.09	468.09	. 00	6.513	. 687	. 105
485.31	485.32	+. . 01	10.377	1.091	. 105
497.20	497.23	+. 03	15.319	1.526	. 100
501.86	501.95	+.09	21.240	2.126	. 100
$55^{8.91}$	558.88	$-.03$	2.000	. 109	. 054
573.75	573.74	-. 01	3.705	. 361	. 097
594.65	594.66	+. OI	6.513	. 977	. 150
62 I .38	621.33	-. 05	10.673	. 973	. 091
642.86	642.83	-. 03	16.147	1. 100	. 086
654.34	654.36	$+.02$	22.917	2.186	. 095
809.68	80.67	-. 01	2.000	. 180	. 090
831.04	83 r .03	. OI	3.837	. 461	. 120
849.59	849.52	. 07	6.513	. 572	. 088
875.81	875.76	-. 05	10.673	1.074	. 106
904.42	904.36	-. 06	16561	1.718	. 104
1058.29	1058.61	$+.32$	2.000	. 979	. 490
1082.82	1082.71	$-.11$	3.837	. 295	. 074
1106.99	1107.03	+. $0+$	6.716	1.000	. 149
1135.61	1135.51	$-.10$	10.970	I. 199	. 109
1164.79	1164.92	$+.13$	16.975	2.440	. 144

TABLE

SELECTED SPIRALS FOR AN 8° CURVE, GIVING

\triangle	s.	$n \times c$.	$D_{8}(n+1)$.	D^{\prime}.	d.
10°	$2^{\circ} \cdot 30^{\prime}$	5×11	$9^{\circ} \mathbf{O 6}^{\prime}$ OI' ${ }^{\prime \prime}$	$9^{\circ} 06^{\prime}$	19.95
20	230	5×12	82026	816	25.71
20	$3 \quad 30$	6×14	82026	834	34.86
20	440	7×15	85351	854	39.90
20	500	8×16	92307	924	45.52
30	230	5×12	82026	807	26.50
30	$3 \quad 30$	6×14	82026	814	36.16
30	$4 \quad 40$	7×16	82026	826	47.01
30	600	8×17	$8 \quad 4955$	836	53.13
30	$7 \quad 30^{\circ}$	9×18	91608	846	60.05
30	9 10	10×19	93936	914	65.70
40	230	5×12	82026	$8 \quad 04$	26.93
40	$3 \quad 30$	6×14	82026	808	36.85
40	440	7×16	82026	814	48.25
40	6 00	8×18	82026	$8 \quad 22$	61.35
40	$7 \quad 30$	9×19	84649	830	68.07
40	9 10	10 $\times 20$	9 10 34	840	75.01
40	II 00	11×21	93203	854	82.13
40	1300	12×22	9 51 36	914	89.8 I
60	30	5×12	82026	$8 \quad 02$	27.30
60	$3 \quad 30$	6×14	82026	$8 \quad 03$	38.22
60	440	7×16	82026	806	49.75
60	6 oo	8×18	82026	8 10	62.87
60	$7 \quad 30$	9×20	82026	816	77. 16
60	910	10×22	82025	$8 \quad 24$	93.05
60	II 00	11×23	84213	831	101.08
60	1300	12×25	84028	848	118.19
60	15 10	13×26	$8 \quad 5859$	902	127.21
60	$17 \quad 30$	14×27	$9 \quad 1607$	922	136.45
80	40	7×17	$7 \quad 5057$	804	57.04
80	6 00	8×19	75403	806	71.78
80	$7 \quad 30$	9×20	82026	$808 \frac{1}{2}$	79.18
80	9 10	10×22	82025	813	95.23
80	II 00	11×24	82025	8 8 819	112.67
80	1300	12×26	82025	828	130.86
80	15 10	13×27	$8 \quad 3859$	834	140.88
80	$17 \quad 30$	14×28	$8 \quad 5613$	842	150.55

EQUAL LENGTHS BY CHORD MEASUREMENT.

$\frac{1}{2}$ old line.	$\frac{1}{2}$ new line.	Diff.	x.	h.	k.
82.45	82.47	+. 02	. 8798	. 051	. 058
150.71	150.72	+. OI	. 9598	. 051	. 053
159.86	159.88	+. 02	I. 852	. 117	. 063
164.90	164.92	+. 02	3.053	. 185	.06I
170.52	170.55	+. 03	4.744	. 221	. 047
214.00	214.00	.co	. 9598	. 049	. 051
223.66	223.68	$+.02$	1. 852	. 142	. 077
234.51	234.53	+.02 .	3.256	. 260	. 080
240.63	240.65	$+.02$	5.040	. 325	. 065
247.55	247.55	.oo	7.452	. 287 -	. 039
253.20	253.18	$-.02$	10.620	. 590	. 056
276.93	276.94	+ . Or	. 9598	. 079	. 082
286.85	286.87	+. 02	I. 852	. 181	. 088
298.25	298.24	-. OI	3.256	. 293	. 090
3 II .35	3 II. 33	-. 02	5.337	. 330	. 062
318.07	318.06	-. OI	7.866	. 472 -	. 060
325.01	325.00	-. or	11.179	. 629	. 056
332.13	332.12	. 01	15.415	. 840	. 054
339.81 .	339.81	.oo	20.723	1.024	. 049
402.30	402.32	+. 02	. 9598	. 136	. 142
413.22	413.19	$-.03$	I. 852	. 083	. 045
424.75	424.76	+. 01	3.256	. 317	. 097
437.87	437.88	+. OI	5.337	. 539	. 101
452.16	452.18	$+.02$	8.280	.863-	. 104
468.05	468.02	$-.03$	12.297	I. 139	. 093
476.08	476.09	+ . 01	16.883	1. 523	. 090
493.19	493.18	-. 01	23.548	2. 160	. 092
502.2 I	502.21	. 00	30.817	2.613	. 085
511.45	511.45	. 00	39.595	3.157	. 080
	557.02	-. 02	3.460	. 366	. 106
571.78	571.75	-. 03	$5 \cdot 633$. 408	. 072
579.18	579.18	. 00	8.280	. 860	. 104
595.23	595.25	$+.02$	12.297	I. 346	. 110
612.67	612.70	+. 03	17.617	1.719	. 109
630.86	630.90	+. 04	-24.490	2.738	. 112
640.88	640.88	+.00	32.002	3.119	. 098
650.55	650.62	$+.07$	41.062	3.809	. 093

TABLE

SELECTED SPIRALS FOR A 16° CURVE,

\triangle	s.	$n \times c$.	$D_{s(n+1)}$.	D^{\prime}.	d.
30°	$4^{\circ} 40^{\prime}$	7×10	$13^{\circ} 21^{\prime} 48^{\prime \prime}$	$18^{\circ} 00^{\prime}$	33.59
40	6 00	8×10	$\begin{array}{llll}15 & 02 & 34\end{array}$	$17 \quad 14$	36.14
60	$7 \quad 30$	9×10	164331	$16 \quad 32$	38.47
60	9 Io	10×11	164331	1648	46.40
60	II 00	II $\times 12$	1643 3r	$17 \quad 14$	54.62
60	1300	12×12	$\begin{array}{llll}18 & 07 & 48\end{array}$	1722	54. 14
60	15 10	13×13	18 or 18	1810	62.88
60	1730	14×13	19 19 14	$18 \quad 12$	62.85
60	2000	15×14	$19 \quad 0605$	$20 \quad 00$	72.14
80	$7 \quad 30$	9×10	164331	1616	39.74
So	9 10	10×11	164331	$16 \quad 26$	47.49
80	II Oo	$1 \mathrm{If} \times 12$	1643 31	1638	56.19
80	1300	12×13	164330	$16 \quad 56$	65.24
80	15 10	13×14	$16 \quad 4329$	1722	74.72
80	$17 \quad 30$	14×14	$17 \quad 5544$	1724	75.02
80	$20 \quad 00$	15×15	175054	1806	85.15
80	2240	16×15	$18 \quad 5825$	18 o8	85. 18
80	2830	18×16	195320	1942	95.84

GIVING EQUAL LENGTHS OF ACTUAL ARCS.

$\frac{1}{2}$ old line.	$\frac{1}{2}$ new line.	Diff.	x.	h.	k.
127.64	127.64	. 00	2.035	. 388	. 191
161.55	161.55	.oo	2.965	. 430	. 145
226.58	226.56	. 02	4.140	. 436	. 105
234.50	234.45	$-.05$	6.148	. 576	. 094
242.73	246.67	-. 06	8.808	. 860	. 099
242.25	242.26	+. 01	11.303	1. 093	. 097
250.99	250.99	- . 00	15.409	I. 516	. 098
250.96	250.97	+. .01	19.064	I. 552	
260.25	260.25	. 00	25.031	2.182	. 087
290.55	290.47	-. 08	4.140	. 328	. 305
298.30	$29^{8.27}$	-. 03	6.148	. 680	. 111
307.01	306.96	$-.05$	8.808	. 943	. 107
316.06	316.03	$-.03$	12.245	r. 384	. 113
325.53	325.54	+. 01	16.594	1. 973	. 119
325.83	325.81	-. 02	20.531	1.939	. 094
335.97	335.96	-. 01	26.819	2.657	. 099
336.00	335.99	-. OI	32.276	2.677	. 083
346.65	346.66	+.01	$4^{3.221}$	3.748	. 078

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN this book on the date due. the penalty WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $\$ 1.00$ ON THE SEVENTH DAY overdue.

YA 06863
$\sqrt{54} 172$
9

UNIVERSITY OF CALIFORNIA LIBRARY

